[1] SHAN M, GUO J, GILL E. Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Sciences, 2015, 80:18-32. [2] 梁斌, 杜晓东, 李成, 等. 空间机器人非合作航天器在轨服务研究进展[J]. 机器人, 2012, 34(2):116-130. LIANG B, DU X D, LI C, et al. Space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2):116-130(in Chinese). [3] BOSSE A B, HENSHAW C G, PIPITONE F, et al. SUMO:Spacecraft for the universal modification of orbits[C]//Proceedings of SPIE-Spacecraft Platforms and Infrastructure. Bellingham:The International Society for Optical Engineering, 2004:36-46. [4] ÉRIC M, ÉRICK D, PIEDBOEUF J C, et al. The TECSAS mission from a Canadian perspective[C]//ISAIRAS 2005 Conference. Munich:Canadian Space Agency, 2005:3-11. [5] ELLERY A. A robotics perspective on human spaceflight[J]. Earth Moon & Planets, 1999, 87(3):173-190. [6] 翟光, 仇越, 梁斌, 等. 在轨捕获技术发展综述[J]. 机器人, 2008, 30(5):85-98. ZHAI G, QIU Y, LIANG B, et al. Development of on orbit capture technology[J]. Robot, 2008, 30(5):85-98(in Chinese). [7] 郭金伟, 黄志荣, 许允斗, 等. 一类基于四面体组合单元的模块化构架式可展开天线机构[J]. 航空学报, 2020, 41(3):423219. GUO J W, HUANG Z R, XU Y D, et al. Deployable antenna mechanism with class of modular truss based on tetrahedral combination unit[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):423219(in Chinese). [8] CURTIS S, BRANDT M, BOWERS G, et al. Tetrahedral robotics for space exploration[J]. IEEE Aerospace & Electronic Systems Magazine, 2007, 22(6):22-30. [9] 姚燕安, 张迪, 李晔卓, 等. 多面体网型空间抓捕机构的设计与分析[J]. 南京航空航天大学学报, 2019, 51(3):263-271. YAO Y A, ZHANG D, LI Y Z, et al. Design and analysis of polyhedral net space capture mechanism[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(3):263-271(in Chinese). [10] 刘洋, 姚燕安, 何妍颖. 变拓扑3-RSR多面体对接机构的设计与研究[J]. 载人航天, 2018, 24(1):61-66. LIU Y, YAO Y A, HE Y Y. Design and research of topological 3-RSR polyhedron docking mechanism[J]. Manned Spaceflight, 2018, 24(1):61-66(in Chinese). [11] SACHIN C, IOAN S, STEVE C. Moveit![ROS topics] [J]. IEEE Robotics & Automation Magazine, 2012, 19(1):18-19. [12] 郭玉, 李彬, 赵新华. 3-RRS并联机构运动学传动性能分析[J]. 机械设计, 2015, 32(3):72-76. GUO Y, LI B, ZHAO X H. Analysis on transmission performance of 3-RRS parallel mechanism[J]. Journal of Machine Design, 2015, 32(3):72-76(in Chinese). [13] 倪仕全, 田大鹏, 石磊. 紧凑型3-RRS并联机构运动学仿真及控制研究[J]. 机电工程, 2019, 36(11):1172-1176. NI S Q, TIAN D P, SHI L. Kinematics simulation and control of compact 3-RRS parallel mechanism[J]. Journal of Mechanical & Electrical Engineering, 2019, 36(11):1172-1176(in Chinese). [14] 李大海, 李瑞琴, 宋胜涛, 等. 3-RRS球面并联机构的位置解及工作空间研究[J]. 机械传动, 2016, 40(10):17-23. LI D H, LI R Q, SONG S T, et al. Study on the position solution and workspace of 3-RRS spherical parallel mechanism[J]. Journal of Mechanical Transmission,2016, 40(10):17-23(in Chinese). [15] 马春生, 汪辉, 李瑞琴, 等. 一种3-RRS并联机构位置分析的代数消元法[J]. 机械设计与研究, 2016, 32(4):5-9. MA C S, WANG H, LI R Q, et al. Position analysis of a kind of 3-RRS parallel mechanism based on algebraic elimination method[J]. Machine Design and Research, 2016, 32(4):5-9(in Chinese). [16] 艾青林, 祖顺江, 胥芳. 并联机构运动学与奇异性研究进展[J]. 浙江大学学报(工学版), 2012, 46(8):1345-1359. AI Q L, ZU S J, XU F. Review of kinematics and singularity of parallel manipulator[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(8):1345-1359(in Chinese). [17] ARAI T, CLEARY K, NAKAMURA T, et al. Design, analysis and construction of a prototype parallel link manipulator[C]//IEEE International Workshop on Intelligent Robots & Systems 90 Towards a New Frontier of Applications. Piscataway:IEEE Press, 1990:205-212. [18] 高健, 吴洪涛. 某一特殊普通面对称Bricard机构及其分析[J]. 应用科技, 2011, 38(1):54-58. GAO J, WU H T. One special type of the general plane-symmetric Bricard linkages and its analysis[J]. Applied Science and Technology, 2011, 38(1):54-58(in Chinese). [19] 马艳, 张群, 李锐明, 等. 可折展空间八转动副连杆捕获机构的设计[J]. 西安交通大学学报, 2020, 54(3):179-187. MA Y, ZHANG Q, LI R M, et al. Design and analysis of foldable capture mechanism based on spatial 8-rotation linkages[J]. Journal of Xi'an Jiaotong University, 2020, 54(3):179-187(in Chinese). [20] SHANG H, WEI D W, KANG R J, et al. Gait analysis and control of a deployable robot[J]. Mechanism & Machine Theory, 2017, 120:107-119. [21] ANGELES J, KECSKEMETHY A. Kinematics and dynamics of multi-body systems[M]. Vienna:Springer Vienna, 1995:75-165. [22] LIU F, ZHANG J, HU Q. A modified constraint force algorithm for flexible multibody dynamics with loop constraints[J]. Nonlinear Dynamics, 2017, 90(3):1885-1906. [23] ROHMER E, SINGH S P N, FREESE M. V-REP:A versatile and scalable robot simulation framework[C]//Intelligent Robots and Systems (IROS) 2013. Piscataway:IEEE Press, 2013:1321-1326. [24] WAMPLER C. Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods[J]. IEEE Transactions on Systems Man & Cybernetics, 1986, 16(1):93-101. [25] LIU S Z, YU Y Q, ZHU Z C, et al. Dynamic modeling and analysis of 3-RRS parallel manipulator with flexible links[J]. Journal of Central South University of Technology, 2010, 17(2):323-331. [26] CHEN Y, YOU Z, TARNAI T. Threefold-symmetric Bricard linkages for deployable structures[J]. International Journal of Solids & Structures, 2005, 42(8):2287-2301. [27] 商浩. 基于Bricard机构的可展机器人[D]. 天津:天津大学, 2018:24-33. SHANG H. A deployable robot based on the Bricard linkage[D]. Tianjin:Tianjin University, 2018:24-33(in Chinese). [28] MORTIMER M, HORAN B, JOORDENS M, et al. Searching Baxter's URDF robot joint and link tree for active serial chains[C]//2015 10th System of Systems Engineering Conference (SoSE). Piscataway:IEEE Press, 2015:428-433. |