[1] |
林家泉, 李弯弯. 基于PMV-PPD的地面空调最佳送风速度[J]. 航空学报, 2017, 38(8):121089. LIN J Q, LI W W. Best wind speed of ground air conditioning system based on PMV-PPD[J]. Acta Aeronautica et Astronautica Sinica,2017, 38(8):121089(in Chinese).
|
[2] |
CUI W, OUYANG Q, ZHU Y. Field study of thermal environment spatial distribution and passenger local thermal comfort in aircraft cabin[J]. Building & Environment, 2014, 80(10):213-220.
|
[3] |
樊兆峰, 马小平, 邵晓根,等. 非线性系统RBF神经网络多步预测控制[J]. 控制与决策, 2014, 29(7):1274-1278. FAN Z F, MA X P, SHAO X G, et al.RBF neural network multi-step predictive control for nonlinear systems[J]. Control and Decision, 2014, 29(7):1274-1278(in Chinese).
|
[4] |
皮骏, 马圣, 贺嘉诚,等. 基于IGA-ELM网络的滚动轴承故障诊断[J]. 航空学报, 2018, 39(9):422025. PI J, MA S, HE J C, et al. Rolling bearing fault diagnosis based on IGA-ELM network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):422025(in Chinese).
|
[5] |
HAMID M F A, RICHARD H G A, RAMLI N A. An analysis on energy consumption of two different commercial buildings in Malaysia[C]//IEEE International Conference on Power & Energy.Piscataway:IEEE Press, 2017:344-349.
|
[6] |
王修岩, 刘艳敏, 张革文,等. 基于PSO和CRO联合算法的飞机客舱能耗预测[J]. 系统仿真学报, 2018, 30(8):263-270. WANG X Y, LIU Y M, ZHANG G W, et al. Prediction of aircraft cabin energy consumption based on PSO and CRO algorithms[J]. Journal of System Simulation, 2018, 30(8):263-270(in Chinese).
|
[7] |
ZHOU C, DING L Y, HE R. PSO-based Elman neural network model for predictive control of air chamber pressure in slurry shield tunneling under Yangtze River[J]. Automation in Construction, 2013, 36(15):208-217.
|
[8] |
RATNAWEERA A, HALGAMUGE S K, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3):225-240.
|
[9] |
WANG C F, LIU K. An improved particle swarm optimization algorithm based on comparative judgment[J]. Natural Computing, 2017,32(6):123-132.
|
[10] |
ARUMUGAM M S, RAO M V C. On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems[J]. Applied Soft Computing Journal, 2008, 8(1):324-336.
|
[11] |
LI J W, CHENG Y M, CHEN K Z. Chaotic particle swarm optimization algorithm based on adaptive inertia weight[C]//Proceedings of the 26th China Control and Decision-Making Conference, 2014:1310-1315.
|
[12] |
ZHANG Y, ZHAO Y, FU X, et al. A feature extraction method of the particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization for Brillouin scattering spectra[J]. Optics Communications, 2016, 4(37):56-66.
|
[13] |
王东风, 孟丽. 粒子群优化算法的性能分析和参数选择[J]. 自动化学报, 2016, 42(10):1552-1561. WANG D F, MENG L. Performance analysis and parameter selection of PSO algorithms[J]. Acta Automatica Sinica, 2016, 42(10):1552-1561(in Chinese).
|
[14] |
ALKHASAWNEH M S, TAY L T. A hybrid intelligent system integrating the cascade forward neural network with elman neural network[J]. Arabian Journal for Science & Engineering, 2017, 43(12):6737-6749.
|
[15] |
WANG D, TAN D, LIU L. Particle swarm optimization algorithm:An overview[J]. Soft Computing, 2017, 22(2):387-408.
|
[16] |
ZHANG S, JIANG H H, YIN Y Y, et al. The prediction of the gas utilization ratio based on TS fuzzy neural network and particle swarm optimization[J]. Sensors, 2018, 18(2):625-644.
|
[17] |
BONYADI M R, MICHALEWICZ Z. Particle swarm optimization for single objective continuous space problems:A review[J]. Evolutionary Computation, 2017, 25(1):1-54
|
[18] |
SHI Y, EBERHART R C. Empirical study of particle swarm optimization[C]//Congress on Evolutionary Computation, 2002:1945-1950.
|
[19] |
ZHANG Y, ZHAO Y, FU X, et al. A feature extraction method of the particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization for Brillouin scattering spectra[J]. Optics Communications, 2016, 4(37):56-66.
|
[20] |
ALAHMER A, OMAR M A, MAYYAS A, et al. Effect of relative humidity and temperature control on in-cabin thermal comfort state:Thermodynamic and psychometric analyses[J]. Applied Thermal Engineering, 2015, 31(14):2636-2644.
|
[21] |
LONG Q, GUO S, LI Q, et al. Research of converter transformer fault diagnosis based on improved PSO-BP algorithm[J]. IOP Conference Series:Materials Science and Engineering, 2017,231(9):121-127.
|
[22] |
GONZALO E, FERNANDEZLUNA J, MARTINEZ J A. A brief historical review of particle swarm optimization[J]. Journal of Bioinformatics & Intelligent Control, 2012, 1(1):3-16.
|
[23] |
孟蓉歌, 张春化, 梁继超. 改进粒子群优化-Elman算法在发动机曲轴脉宽预测中的应用[J]. 中国机械工程, 2018, 29(7):766-770. MENG R G, ZHANG C H, LIANG J C. Applications of advanced PSO-elman in engine crankshaft pulse width predictions[J]. China Mechanical Engineering, 2018,29(7):766-770(in Chinese).
|
[24] |
ALKHASAWNEH M S, TAY L T. A hybrid intelligent system integrating the cascade forward neural network with elman neural network[J]. Arabian Journal for Science & Engineering, 2017,3(4):1-13.
|