[1] CIEZKI H K, NEGRI M, HURTTLEN J, et al. Overview of the german gel propulsion technology program:AIAA-2014-3794[R]. Reston, VA:AIAA, 2014. [2] KAMPEN J, MADLENER K, CIEZKI H K. Characteristic flow and spray properties of gelled fuels with regard to the impinging jet injector type:AIAA-2006-4573[R]. Reston, VA:AIAA, 2006. [3] MADLENER K, CIEZKI H K, KAMPEN J, et al. Characterization of various properties of gel fuels with regard to propulsion application:AIAA-2008-4870[R]. Reston, VA:AIAA, 2008. [4] RAMASUBRAMANIAN C, NOTARO V, LEE J G. Characterization of near-field spray of nongelled-and gelled-impinging doublets at high pressure[J]. Journal of Propulsion and Power, 2015, 31(6):1642-1652. [5] FAKHRI S, LEE J G, YETTER R A. Atomization and spray characteristics of gelled-propellant simulants formed by two impinging jets:AIAA-2009-5241[R]. Reston, VA:AIAA, 2009. [6] YANG L J, FU Q F, QU Y Y, et al. Breakup of a power-law liquid sheet formed by an impinging jet injector[J]. International Journal of Multiphase Flow, 2012, 39:37-44. [7] 夏振炎, 李珍妮, 李建军, 等, 撞击式射流破碎特性的实验研究[J]. 天津大学学报, 2016, 49(7):770-776. XIA Z Y, LI Z N, LI J J, et al. An experimental study on breakup characteristics of impinging jets[J]. Journal of Tianjin University, 2016, 49(7):770-776(in Chinese). [8] 杨伟东, 张蒙正. 凝胶推进剂流变及雾化特性研究与进展[J]. 火箭推进, 2005, 31(5):37-42. YANG W D, ZHANG M Z. Research and development of rheological and atomization characteristics of gelled propellants[J]. Journal of Rocket Propulsion, 2005, 31(5):37-42(in Chinese). [9] 邓寒玉, 封锋, 武晓松, 等. 基于扩展TAB模型的凝胶液滴二次雾化特性研究[J]. 推进技术, 2015, 36(11):1734-1740. DENG H Y, FENG F, WU X S, et al. Characteristics of second atomization for gelled droplet based on extended TAB model[J]. Journal of Propulsion Technology, 2015, 36(11):1734-1740(in Chinese). [10] XIAO H, SHI Y, XU Z, et al. Atomization characteristics of gelled hypergolic propellant simulants[J].International Journal of Precision Engineering and Manufacturing, 2015, 16(4):743-747. [11] MA D J, CHEN X D, KHARE P, et al. Atomization patterns and breakup characteristics of liquid sheets formed by two impinging jets:AIAA-2011-0097[R]. Reston, VA:AIAA, 2011. [12] ZHU C X, ERTL M, WEIGAND B. Numerical investigation on the primary breakup of an inelastic non-Newtonian liquid jet with inflow turbulence[J]. Physics of Fluids, 2013, 25(8):083102. [13] 刘虎, 强洪夫, 韩亚伟, 等. 幂律型凝胶推进剂射流撞击雾化SPH模拟[J]. 推进技术, 2015, 36(9):1416-1425. LIU H, QIANG H F, HAN Y W, et al. SPH simulation of atomization characteristics of power-law gelled propellant formed by two impinging jets[J]. Journal of Propulsion Technology, 2015, 36(9):1416-1425(in Chinese). [14] 刘虎, 强洪夫, 王广. 凝胶推进剂射流撞击雾化研究进展[J]. 含能材料, 2015, 23(7):697-708. LIU H, QIANG H F, WANG G. Review on jet impinging atomization of gelled propellant[J]. Chinese Journal of Energetic Materials, 2015,23(7):697-708(in Chinese). [15] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J].Journal of Computational Physics, 1981, 39(1):201-225. [16] RIDER W J, KOTHE D B. Reconstructing volume tracking[J]. Journal of Computational Physics, 1998, 141(2):112-152. [17] SCHLOTTKE J, WEIGAND B. Direct numerical simulation of evaporating droplets[J]. Journal of Computational Physics, 2008, 227(10):5215-5237. [18] GOMMA H, KUMAR S, HUBER C, et al. Numerical comparison of 3D jet breakup using a compression scheme and an interface reconstruction based VOF-code[C]//24th ILASS-Europe, 2011. [19] MOTZIGEMBA M, ROTH N, BOTHE D, et al. The effect of non-Newtonian flow behavior on binary droplet collisions:VOF-simulation and experimental analysis[C]//18th ILASS-Europe, 2002. [20] FOCKE C, BOTHE D. Computational analysis of binary collisions of shear thinning droplets[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(14-15):799-810. [21] SCHRÖDER J, LEDERER M L, GAUKEL V, et al. Effect of atomizer geometry and rheological properties on effervescent atomization of aqueous polyvinylphrrolidone solution[C]//24th ILASS-Europe, 2011. [22] 朱呈祥, 尤延铖. 横向气流中非牛顿液体射流直接数值模拟[J]. 航空学报, 2016, 37(9):2659-2668. ZHU C X, YOU Y C. Direct numerical simulation of a non-Newtonian liquid jet in crossflow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2659-2668(in Chinese). [23] 朱呈祥, 陈荣钱, 尤延铖. 低韦伯数非牛顿射流撞击破碎直接数值模拟[J]. 航空学报, 2017, 38(8):120764. ZHU C X, CHEN R Q, YOU Y C. Direct numerical simulation of impinging jet breakup with non-Newtonian properties at low Weber number[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8):120764(in Chinese). [24] BATCHELOR G K. The theory of homogeneous turbulence[M]. Cambridge:Cambridge University Press, 1953:133-168. [25] QIAN J, LAW C K. Regimes of coalescence and separation in droplet collision[J]. Journal of Fluid Mechanis, 1997, 331(1):59-80. |