[1] SEIBERT H. Applications for PMI foams in aerospacesandwich structures[J]. Reinforced Plastics, 2006, 50(1):44-48.
[2] 张纪奎, 郦正能, 寇长河. 大展弦比复合材料机翼结构设计研究[J]. 航空学报, 2005, 26(4):450-453. ZHANG J K, LI Z N, KOU C H. Structural design of high aspect ratio composite material wing[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4):450-453(in Chinese).
[3] 李涛, 陈蔚, 成理, 等. 泡沫夹层结构复合材料的应用与发展[J]. 科技创新导报, 2009, 14:3-5. LI T, CHEN W, CHENG L, et al. The development and application of foam sandwich structural composites[J]. Science and Technology Innovation Herald, 2009, 14:3-5(in Chinese).
[4] 李朝光, 矫桂琼, 黄涛, 等. Z向增强复合材料层压板冲击后压缩性能试验研究[J]. 机械强度, 2010, 32(3):373-377. LI C G, JIAO G Q, HUANG T, et al. Experimental study on the compression after impact propertiesof Z-reinforced composite laminates[J]. Journal of Mechanical Strength, 2010, 32(3):373-377(in Chinese).
[5] INES I, SONIA S S. Numerical modelling of the low-velocity impact response of composite sandwichbeams with honeycomb core[J]. Composite Structures, 2013, 106:716-723.
[6] 谢宗蕻, 刘海涵, 田江. 复合材料泡沫夹层板准静态压痕实验的有限元模拟[J]. 材料工程, 2014(2):13-17. XIE Z H, LIU H H, TIAN J. Finite element simulation of quasi-static indentation tests on foam coresandwich composites[J]. Journal of Materials Engineering, 2014(2):13-17(in Chinese).
[7] 王杰. 复合材料泡沫夹层结构低速冲击与冲击后压缩性能研究[D]. 上海:上海交通大学, 2013:65-78. WANG J. Study on the low-velocity impact and compression-after-impact behavior of foam-core sandwich panels[D]. Shanghai:Shanghai Jiao Tong University, 2013:65-78(in Chinese).
[8] LIU J Y, ZHU X, LI T Y, et al. Experimental study on the low velocity impact responses of all composite pyramidal truss core sandwich panel after high temperature exposure[J]. Composite Structures, 2014, 116:670-681.
[9] 万玉敏, 张发, 竺铝涛. 泡沫夹层复合材料与复合材料层合板低速冲击性能的比较[J]. 机械工程材料, 2014(7):90-94, 98. WAN Y M, ZHANG F, ZHU L T. Comparison of low-velocity impact properties between foamsandwich composites and composite laminates[J]. Materials for Mechanical Engineering, 2014(7):90-94, 98(in Chinese).
[10] ALI K, MEHMET S, HALIL M E, et al. Effect of impactor shapes on the low velocity impact damageof sandwich composite plate:Experimental study and modelling[J]. Composites Part B:Engineering, 2016, 86:143-151.
[11] ZHENG Y Y, XIAO J, DUAN M F, et al. Experimental study of partially-cured Z-pins reinforced foam core composites:K-Cor sandwich structures[J]. Chinese Journal of Aeronautics, 2014, 27(1):153-159.
[12] 褚奇奕, 肖军, 李勇, 等. 碳纤维增强环氧Z-pin拔脱性能[J]. 航空学报, 2015, 36(4):1312-1319. CHU Q Y, XIAO J, LI Y, et al. Pullout performance of carbon fiber/epoxy Z-pins[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1312-1319(in Chinese).
[13] 段友社, 郭书良, 吴刚, 等. Z向增强泡沫夹芯复合材料冲击损伤及冲击后压缩性能[J]. 复合材料学报, 2012, 29(2):180-185. DUAN Y S, GUO S L, WU G, et al. Impact damage chaaracteristics and postimpact compressive properties of Z-reinforcement foam core sandwich composites[J]. Acta Materiae Compositae Sinica, 2012, 29(2):180-185(in Chinese).
[14] NANAYAKKARA A, FEIH S, MOURITZ A P. Experimental impact damage study of a Z-pinned foam core sandwich composite[J]. Journal of Sandwich Structures and Materials, 2012, 14(4):469-486.
[15] ZHOU J, GUAN Z W, CANTWELL W J, et al. The energy-absorbing behaviour of foam cores reinforced with composite rods[J]. Composite Structures,2014, 116:346-356.
[16] PENG Y, SHAMS S S, SLAY A, et al. Evaluation of temperature effects on low velocity impact damage in composite sandwich panels with polymeric foam cores[J]. Composite Structures, 2015, 129:213-223.
[17] PARTRIDGE I K, CARTI D D R, BONNINGTON T. Manufacture and performance of Z-pinned composites[C]//ADVANI S, SHONAIKE G. Advanced polymeric materials:structureproperty relationships. Boca Raton:CRC, 2003.
[18] BARAL N, CARTIE D D R, PARTRIDGE I K, et al. Improved impact performance of marine sandwi-ch panels using through-thickness reinforcement:experimental results[J]. Composites Part B:Engineering, 2010, 41(2):117-123.
[19] 李晓霞, 伍耐明, 段玉霞, 等. 碳纤维层合板低速冲击后的红外热波检测分析[J]. 复合材料学报, 2010, 27(6):88-93. LI X X, WU N M, DUAN Y X, et al. Infrared thermal wave imaging for carbon fiber laminated boards after low velocity impact[J]. Acta Materiae Compositae Sinica, 2010, 27(6):88-93(in Chinese).
[20] 余轶, 刘伟庆, 万里, 等. 红外热波法检测夹层结构内部缺陷的研究[J]. 玻璃钢/复合材料, 2013(8):55-59, 8. YU Y, LIU W Q, WAN L, et al. Assessment for placement suitability of prepregpart of drape[J]. Fiber Reinforced Plastics/Composites, 2013(8):55-59, 8(in Chinese).
[21] 沈真, 杨胜春, 陈普会. 复合材料抗冲击性能和结构压缩设计许用值[J]. 航空学报, 2007, 28(3):561-566. SHEN Z, YANG S C, CHEN P H. Behaviors of composite materials to withstand impact and structural compressive design allowableness[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3):561-566(in Chinese).
[22] 张广成, 何祯, 刘良威, 等. 夹层结构复合材料低速冲击试验与分析[J]. 复合材料学报, 2012, 29(4):170-177. ZHANG G C, HE Z, LIU L W, et al. Low-velocity impact experiment and analysis of sandwich structure composites[J]. Acta Materiae Compositae Sinica, 2012, 29(4):170-177(in Chinese). |