[1] 张文伟, 杨春信. 再生式环控生保系统水气分离技术研究进展[J]. 航天医学与医学工程, 2011, 24(6): 444-450. ZHANG W W, YANG C X. Progress of research on gas/liquid separation technology of regenerative environment control and life support system[J]. Space Medicine and Medical Engineering, 2011, 24(6): 444-450 (in Chinese).
[2] 刘乐柱, 张天平. 空间气液分离技术及其应用[J]. 真空与低温, 2010, 16(1): 6-11. LIU L Z, ZHANG T P. Space gas-liquid separation technologies and applications[J]. Vacuum and Cryogenics, 2010, 16(1): 6-11 (in Chinese).
[3] 卜珺珺, 曹军, 杨晓林. 载人航天器气液分离技术综述[J]. 航天器工程, 2014, 23(2): 124-131. BU J J, CAO J, YANG X L. Overview of manned spacecraft gas-liquid separation technology[J]. Spacecraft Engineering, 2014, 23(2): 124-131 (in Chinese).
[4] 王飞, 周抗寒, 李俊荣, 等. 模拟微重力条件下的膜式水气分离器的实验研究[J]. 航天医学与医学工程, 2008, 21(4): 310-315. WANG F, ZHOU K H, LI J R, et al. Experimental studies of a water/gas separator using hydrophilic micro-filtration membrane under simulated microgravity[J]. Space Medicine and Medical Engineering, 2008, 21(4): 310-315 (in Chinese).
[5] 丁立, 王超, 杨春信, 等. 静态水气分离器分离效率实验研究[J]. 航天医学与医学工程, 2011, 24(5): 345-349. DING L, WANG C, YANG C X, et al. Experimental study on separation efficiency of static gas/liquid separator[J]. Space Medicine and Medical Engineering, 2011, 24(5): 345-349 (in Chinese).
[6] 尚文锦, 高峰, 黄永虎, 等. 动态水气分离器微重力性能的地面评测方法研究[J]. 航天医学与医学工程, 2013, 26(3): 174-176. SHANG W J, GAO F, HUANG Y H, et al. Study on ground-based evaluation methods for dynamic liquid/gas separator performance in microgravity[J]. Space Medicine and Medical Engineering, 2013, 26(3): 174-176 (in Chinese).
[7] 赵建福, 彭超, 李晶, 等. 静态水气分离特性的失重飞机实验研究[J]. 工程热物理学报, 2011, 32(5): 799-802. ZHAO J F, PENG C, LI J, et al. Experimental study on performance of a static water-air two-phase separator aboard reduced gravity airplane[J]. Journal of Engineering Thermophysics, 2011, 32(5): 799-802 (in Chinese).
[8] 邱瑞红, 吴志强, 高峰, 等. 空间动态水气分离器失重飞行试验研究[J]. 载人航天, 2015, 21(3): 212-216. QIU R H, WU Z Q, GAO F, et al. Experimental study on performance of a space dynamic gas/liquid separator aboard zero-g plane[J]. Manned Spaceflight, 2015, 21(3): 212-216 (in Chinese).
[9] HOYT N C. The performance of passive cyclonic separators in microgravity[D]. Cleveland: Case Western Reserve University, 2013.
[10] WESTERMANN H, MVLLER R. Design validation -via parabolic flight tests -of a condensate buffer equalizing a discontinuous gas/water flow between a condensing heat exchanger and a water separator: SAE 2006-01-2087[R]. Warrendale: SAE, 2006.
[11] HOYT N C, KAMOTANI Y, KADAMBI J. Computational investigation of the nasa cascade cyclonic separation device: AIAA-2008-0809[R]. Reston: AIAA, 2008.
[12] 杨飞, 张永健. 微重力下气液分离特性的数值模拟[J]. 北京交通大学学报, 2014, 38(4): 14-19. YANG F, ZHANG Y J. Numerical simulation of microgravity gas-liquid separation characteristics[J]. Journal of Beijing Jiaotong University, 2014, 38(4): 14-19 (in Chinese).
[13] 张文伟, 杨春信, 王晔. 直通旋风式高压水分离器性能研究[C]//中国航空学会2009年第八届环控暨人机工效学术交流会议论文集. 北京: 中国航空学会, 2009: 407-411. ZHANG W W, YANG C X, WANG Y. Performance study of straight rotate and high pressure gas-liquid separator[C]//Conference of Environment Control and Human-Machine Ergonomics. Beijing: Chinese Society of Aeronautics and Astronautics, 2009: 407-411 (in Chinese).
[14] ZHANG W W, YANG C X, KE P. Computational investigation of the high pressure water separator[C]//Asia-Pacific International Symposium on Aerospace Technology. Beijing: Chinese Society of Aeronautics and Astronautics, 2010: 99-103.
[15] 张文伟, 杨春信, 丁立, 等. 静态水气分离器分离效率数值模拟[J]. 航天医学与医学工程, 2012, 25(1): 61-65. ZHANG W W, YANG C X, DING L, et al. Numerical simulation on separation efficiency of static gas-liquid separator[J]. Space Medicine and Medical Engineering, 2012, 25(1): 61-65 (in Chinese).
[16] 张文伟, 柯鹏, 杨春信, 等. 气液两相流界面多尺度问题可计算性研究进展[J]. 化工学报, 2014, 65(12): 4645-4654. ZHANG W W, KE P, YANG C X, et al. Progress of computability of multi-scale interface problems in gas-liquid two-phase flow[J]. CIESC Journal, 2014, 65(12): 4645-4654 (in Chinese).
[17] ŠTRUBELJ L, TISELJ I. Two-fluid model with interface sharpening[J]. International Journal for Numerical Methods in Engineering, 2010, 85(5): 575-590.
[18] MINATO A, TAKAMORI K, ISHIDA N. An extended two-fluid model for interface behavior in gas-liquid two-phase flow[C]//Proceedings of the 8th International Conference on Nuclear Engineering. New York: ASME, 2000: 1-9.
[19] ŠTRUBELJ L, TISELJ I, MAVKO B. Simulations of free surface flows with implementation of surface tension and interface sharpening in the two-fluid model[J]. International Journal of Heat and Fluid Flow, 2009, 30(4): 741-750.
[20] HÖHNE T, VALLÉE C. Experiments and numerical simulations of horizontal two-phase flow regimes using an interfacial area density model[J]. Journal of Comput ational Multiphase Flows, 2010, 2(3): 131-143.
[21] YOON H Y, CHO H K, LEE J R, et al. Multi-scale thermal-hydraulic analysis of PWRS using the CUPID code[J]. Nuclear Engineering and Technology, 2012, 44(8): 831-846.
[22] KONDO S, TOBITA Y, MORITA K, et al. Current status and validation of the SIMMER-III LMFR safety analysis code[C]//Proceedings of the 7th International Conference on Nuclear Engineering. Kyoto: JSME, 1999: 1-10.
[23] COSTE P. A large interface model for two-phase CFD[J]. Nuclear Engineering and Design, 2013, 255: 38-50.
[24] HÄNSCH S, LUCAS D, KREPPER E, et al. A multi-field two-fluid concept for transitions between different scales of interfacial structures[J]. International Journal of Multiphase Flow, 2012, 47(3): 171-182.
[25] LANZARONE A W, DEAN W C, HOLDER D W. Development of a mostly liquid separator for use on the international space station: SAE972374[R]. Warrendale: SAE, 1997.
[26] 林建平, 阮晓东, 陈邦国, 等. 流体力学[M]. 北京: 清华大学出版社, 2005: 237, 276-278, 297-298. LIN J P, RUAN X D, CHEN B G, et al.. Fluid mechanics[M]. Beijing: Tsinghua University Press, 2005: 237, 276-278, 297-298 (in Chinese).
[27] ISHII M, HIBIKI T. Thermo-fluid dynamics of two-phase flow[M]. New York: Springer, 2006: 156-162.
[28] TROSHKO A A, HASSAN Y A. A two-equation turbulence model of turbulent bubbly flows[J]. International Journal of Multiphase Flow, 2000, 27(11): 1965-2000.
[29] CLIFT R, GRACE J R, WEBER M E. Bubbles, drops, and particles[M]. London: Academic Press, 1978: 111-116.
[30] ISHII M, ZUBER N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J]. Aiche Journal, 1979, 25(5): 843-855.
[31] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
[32] UBBINK O. Numerical prediction of two fluid systems with sharp interfaces[D]. London: Imperial College of Science, Technology and Medicine, 1997.
[33] OLSSON E, KREISS G. A conservative level set method for two phase flow[J]. Journal of Computational Physics, 2005, 210(1): 225-246.
[34] VASQUEZ S A, IVANOV V A. A phase coupled method for solving multiphase problems on unstructured meshes[C]//Proceedings of ASME 2000 Fluids Engineering Division Summer Meeting. Boston: ASME, 2000: 743-748. |