[1] Shabana A A. Flexible multibody dynamics: Review of past and recent developments[J]. Multibody System Dynamics, 1997, 1(2): 189-222.
[2] Shabana A A. Definition of the slopes and the finite element absolute nodal coordinate formulation[J]. Multibody System Dynamics, 1997, 1(3): 339-348.
[3] Omar M A, Shabana A A. A two-dimensional shear deformable beam for large rotation and deformation problems[J]. Journal of Sound and Vibration, 2001, 243(3): 565-576.
[4] Shabana A A, Yakoub R Y. Three dimensional absolute nodal coordinate formulation for beam elements: Theory[J]. Journal of Mechanical Design, 2001, 123(4): 606-613.
[5] Yakoub R Y, Shabana A A. Three dimensional absolute nodal coordinate formulation for beam elements: Implementation and applications[J]. Journal of Mechanical Design, 2001, 123(4): 614-621.
[6] Dombrowski S V. Analysis of large flexible body deformation in multibody systems using absolute coordinates[J]. Multibody System Dynamics, 2002, 8(4): 409-432.
[7] Kerkkänen K S, Sopanen J T, Mikkola A M. A linear beam finite element based on the absolute nodal coordinate formulation[J]. Journal of Mechanical Design, 2005, 127(4): 621-630.
[8] Gerstmayr J, Shabana A A. Analysis of thin beams and cables using the absolute nodal coordinate formulation[J]. Nonlinear Dynamics, 2006, 45(1): 109-130.
[9] Gerstmayr J, Matikainen M K. Analysis of stress and strain in the absolute nodal coordinate formulation[J]. Mechanics Based Design of Structures and Machines,2006, 34(4): 409-430.
[10] García-Vallejo D, Mikkola A M, Escalona J L. A new locking-free shear deformable finite element based on absolute nodal coordinates[J]. Nonlinear Dynamics, 2007, 50(1): 249-264.
[11] Zhu D P, Lu Y J, Tang J L, et al. Application of large deformation cable beam element in multibody dynamics[C]//Proceedings of the 2007 National Symposium on Structural Dynamics. Beijing: Chinese Society for Vibration Engineering, 2007: 81-107 (in Chinese). 朱大鹏, 路英杰, 汤家力, 等. 大变形索梁单元在多体动力学框架下的应用[C]//2007全国结构动力学学术研讨会论文集. 北京: 中国振动工程学会, 2007: 81-107.
[12] Tang J L, Ren G X, Zhu W D, et al. Dynamics of variable-length tethers with application to tethered satellite deployment[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(8): 3411-3424.
[13] Zhao C Z, Yu H D, Wang H, et al. Dynamic modeling and kinematic behavior of variable cross-section beam based on the absolute nodal coordinate formulation[J]. Journal of Mechanical Engineering, 2014, 50(17): 38-45 (in Chinese). 赵春璋, 余海东, 王皓, 等. 基于绝对节点坐标法的变截面梁动力学建模与运动变形分析[J]. 机械工程学报, 2014, 50(17): 38-45.
[14] Kübler L, Eberhard P, Geisler J. Flexible multibody systems with large deformations and nonlinear structural damping using absolute nodal coordinates[J]. Nonlinear Dynamics, 2003, 34(1): 31-52.
[15] Yu L, Ren G X. Application of solid elements using absolute coordinates in multibody systems dynamics[J]. Journal of System Simulation, 2012, 24(3): 733-739 (in Chinese). 虞磊, 任革学. 基于绝对坐标的实体单元在多体系统动力学中的应用[J]. 系统仿真学报, 2012, 24(3): 733-739.
[16] Olshevskiy A, Dmitrochenko O, Kim C W. Three-dimensional solid brick element using slopes in the absolute nodal coordinate formulation[J]. Journal of Computational and Nonlinear Dynamics, 2014, 9(2): 021001-1-10.
[17] Shabana A A. Dynamics of multibody systems[M]. 3rd ed. Cambridge/New York: Cambridge University Press, 2005: 267-304.
[18] Shabana A A. Computational continuum mechanics[M]. 2nd ed. New York: Cambridge University Press, 2012: 146-217.
[19] Mohamed A A, Shabana A A. A nonlinear visco-elastic constitutive model for large rotation finite element formulations[J]. Multibody System Dynamics, 2011, 26(1): 57-79.
[20] Irgens F. Continuum mechanics[M]. Berlin: Springer-Verlag, 2008: 372-375. |