[1] Guan S Y, Zhang K, Tu Z B. Discussions on penetration principles and technologies for anti-ship missile[J]. Tactical Missile Technology, 2010(4): 1-6 (in Chinese). 关世义, 张克, 涂震飚. 反舰导弹突防原理与突防技术探讨[J]. 战术导弹技术, 2010(4): 1-6.
[2] Gu W J, Wu Z D, Bi L J. Optimal terminal weaving maneuver strategy for anti-ship missile[J]. Tactical Missile Technology, 2011(3): 1-5 (in Chinese). 顾文锦, 武志东, 毕兰金. 反舰导弹最优末端蛇形机动策略[J]. 战术导弹技术, 2011(3): 1-5.
[3] Ma L, Jiang Q S, Wang H. Research on the model of anti-ship missile's mobile penetrating ability to ship-to-air missile[J]. Journal of Naval Aeronautical and Astronautical University, 2008, 23(2): 185-189 (in Chinese). 马良, 姜青山, 汪浩. 反舰导弹对舰空导弹的机动突防模型研究[J]. 海军航空工程学院学报, 2008, 23(2): 185-189.
[4] Chen Y, Wang D S, Fu X Z. Research on missile optimal penetrating maneuver scheme[J]. Fire Control & Command Control, 2009, 34(4): 30-33 (in Chinese). 陈晔, 王德石, 付兴振. 导弹最优突防机动方式研究[J]. 火力与指挥控制, 2009, 34(4): 30-33.
[5] Cheng J, Yang M, Guo Q. Design on maneuver penetration of missile with direct lateral thrust[J]. Journal of Solid Rocket Technology, 2008, 31(2): 111-117 (in Chinese). 程进, 杨明, 郭庆. 导弹直接侧向力机动突防方案设计[J]. 固体火箭技术, 2008, 31(2): 111-117.
[6] Jung B, Kim K S, Kim Y. Guidance law for evasive aircraft maneuvers using artificial intelligence [C]// Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2003: 5552-5563.
[7] Shi X L, Liu Y C, Wang C Q. Study of optimal evasive policy in anti-interception for aerodynamic missiles[J]. Tactical Missile Technology, 2007(3): 7-11 (in Chinese). 史晓丽, 刘永才, 王长青. 飞航导弹反拦截最优机动策略研究[J]. 战术导弹技术, 2007(3): 7-11.
[8] Akdag R, Altilar D T. A comparative study on practical evasive maneuvers against proportional navigation missiles, AIAA-2005-6352[R]. Reston: AIAA, 2005.
[9] Kim Y H, Tahk M J. Guidance synthesis for evasive maneuver of anti-ship missiles, AIAA-2007-6783[R]. Reston: AIAA, 2007.
[10] John C S. Missile terminal guidance and control against evasive targets, ADA378653[R]. Monterey, California: Naval Postgraduate School, 2000.
[11] Peter F, Anthony J. Optimization of launch vehicle ascent trajectories with path constraints and coast arcs[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 296-304.
[12] Hu S S. The optimal control theory and system[M]. Beijing: Science Press, 2006: 3-15 (in Chinese). 胡寿松. 最优控制理论与系统[M]. 北京: 科学出版社, 2006: 3-15.
[13] Yong E M, Chen L, Tang G J. A Survey of numerical methods for trajectory optimization of spacecraft[J]. Journal of Astronautics, 2008, 29(2): 397-405 (in Chinese). 雍恩米, 陈磊, 唐国金. 飞行器轨迹优化数值方法综述[J]. 宇航学报, 2008, 29(2): 397-405.
[14] Wang X L, Shan X X. Time-optimal control based on Bang-Bang theory[J]. Computer Simulation, 2006, 23(4): 163-167 (in Chinese). 王晓亮, 单雪雄. 基于Bang-Bang原理的时间最优控制问题求解[J]. 计算机仿真, 2006, 23(4): 163-167.
[15] Bretl T. Minimum-time optimal control of many robots that move in the same direction at different speeds[J]. IEEE Transactions on Robotics, 2012, 28(2): 351-363.
[16] Mehta S S, MacKunis W, Subramanian S, et al. Nonlinear control of hypersonic missiles for maximum target penetration, AIAA-2012-4886[R]. Reston: AIAA, 2012.
[17] Balku S, Yuceer M, Berber R. Control vector parameterization approach in optimization of alternating aerobic-anoxic systems[J]. Optimal Control Applications and Methods, 2009, 30(6): 573-584.
[18] Hu Y Q. Control variable parameterization based computational method for constrained optimal control problems[D]. Hangzhou: Zhejiang University, 2013 (in Chinese). 胡云卿. 基于控制变量参数化的带约束最优控制问题计算方法[D]. 杭州: 浙江大学, 2013.
[19] Yokoyama N, Suzuki S. Modified genetic algorithm for constrained trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(1): 139-144.
[20] Wuerl A, Crain T, Braden E. Genetic algorithm and calculus of variations-based trajectory optimization technique[J]. Journal of Spacecraft and Rockets, 2003, 40(6): 882-888. |