导航制导与控制

亚轨道飞行器能量管理段轨迹设计

  • 臧希恒 ,
  • 胡永太
展开
  • 西安飞行自动控制研究所, 西安 710065
臧希恒,男,博士,工程师。主要研究方向:空天飞行器再入控制、无人机飞控系统总体、无人机空中加油控制。Tel.:029-88398294,E-mail:zangxiheng@163.com;胡永太,男,硕士,研究员。主要研究方向:空天飞行器再入控制、无人机飞控系统总体、平流层飞艇飞行控制。Tel.:029-88398294,E-mail:13991809811@139.com

收稿日期: 2016-04-21

  修回日期: 2016-05-27

  网络出版日期: 2016-06-12

Trajectory design for terminal area energy management of suborbital reusable launch vehicle

  • ZANG Xiheng ,
  • HU Yongtai
Expand
  • Xi'an Flight Automatic Control Research Institute, Xi'an 710065, China

Received date: 2016-04-21

  Revised date: 2016-05-27

  Online published: 2016-06-12

摘要

亚轨道飞行器(SRLV)通过跟踪特定的轨迹来实现对能量的控制与管理,轨迹设计是能量管理的一项关键技术。深入研究了亚轨道飞行器能量管理段(TAEM)轨迹的设计思想、准则和流程;提出了一种基于待飞距离规划动压剖面的轨迹设计方法,通过调整航向调整段的动压剖面,保证飞行器以亚声速状态进入航向调整段,避免飞行器转弯超调;提出了采用顺风作为轨迹设计的缺省状态,保证飞行器在严重的逆风状态下仍然可以满足着陆窗口约束;通过具体算例进行仿真分析,验证了设计方法的有效性。

本文引用格式

臧希恒 , 胡永太 . 亚轨道飞行器能量管理段轨迹设计[J]. 航空学报, 2016 , 37(S1) : 99 -105 . DOI: 10.7527/S1000-6893.2016.0170

Abstract

The energy of suborbital reusable launch vehicle (SRLV) is controlled and managed by flying along a specific path, so the method of trajectory design is a key technology for terminal area energy management (TAEM). The principle, criterion and process of trajectory design methodology for TAEM of SRLV are represented. An approach of reference dynamic pressure profile design based on distance-to-go is proposed. The subsonic state for entering heading alignment phase is ensured by adjusting the dynamic pressure at heading alignment phase, in this way the SRLV turning overshoot is avoided. In order to ensure the TAEM/approach and landing interface constraints to be met in the presence of severe headwinds, the reference dynamic pressure is designed in tailwind conditions as default. Finally, according to the example simulation analysis, the validity of the TAEM trajectory design method is proved.

参考文献

[1] 解永锋, 唐硕. 亚轨道飞行器再入可达域快速计算方法[J]. 飞行力学, 2011, 29(4):72-75. XIE Y F, TANG S. Rapid calculation of entry footprint of suborbital launch vehicles[J]. Flight Dynamics, 2011, 29(4):72-75 (in Chinese).
[2] THOMAS E M. Space shuttle entry terminal area energy management:NASA Technical Memorandum 104744[R]. Washington, D.C.:NASA Technical Memorandum, 1991.
[3] KLUEVER C A. Terminal guidance for an unpowered reusable launch vehicle with bank constraints[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(1):162-168.
[4] HORNEMAN K R, KLUEVER C A. Terminal area energy management trajectory planning for an unpowered reusable launch vehicle:AIAA-2004-5183[R]. Reston:AIAA, 2004.
[5] COSTA R R. Studies for terminal area GNC of reusable launch vehicles:AIAA-2003-5438[R]. Reston:AIAA, 2003.
[6] 胡孟权. RLV末端能量管理段轨迹实时生成算法研究[J]. 飞行力学, 2007, 25(2):21-24. HU M Q. On-line terminal area energy management trajectory planning for a RLV[J]. Flight Dynamics, 2007, 25(2):21-24 (in Chinese).
[7] 李导, 李新国. 亚轨道飞行器能量管理段在线轨迹设计及仿真[J]. 航天控制, 2010, 28(4):20-23. LI D, LI X G. The on-board trajectory generation and simulation of terminal area energy management for suborbital launch vehicle[J]. Aerospace Control, 2010, 28(4):20-23 (in Chinese).
[8] 沈宏良, 龚正. 航天飞机末端能量管理段在线轨迹设计方法[J]. 宇航学报, 2008, 29(2):430-433. SHEN H L, GONG Z. Methodology of onboard trajectory design for space shuttle terminal area energy management phase[J]. Journal of Astronautics, 2008, 29(2):430-433 (in Chinese).
[9] 孙春贞, 黄一敏, 郭锁凤. 重复使用运载器末端能量管理段轨迹线设计[J]. 系统工程与电子技术, 2007, 29(6):909-914. SUN C Z, HUANG Y M, GUO S F. Trajectory design for terminal area energy management of reusable launch vehicle[J]. Systems Engineering and Electronics, 2007, 29(6):909-914 (in Chinese).
[10] 王宏伦, 裴云峰, 倪少波, 等. 飞行器无动力应急着陆域和着陆轨迹设计[J]. 航空学报, 2014, 35(5):1404-1415. WANG H L, PEI Y F, NI S B, et al. Design of emergency landing region and landing trajectory for unpowered aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):1404-1415 (in Chinese).

文章导航

/