流体力学与飞行力学

高速高温流场电子能非平衡的数值模拟

  • 郝佳傲 ,
  • 王京盈 ,
  • 高振勋 ,
  • 蒋崇文 ,
  • 李椿萱
展开
  • 1. 北京航空航天大学 航空科学与工程学院, 北京 100083;
    2. 山东大学 能源与动力工程学院, 济南 250100
郝佳傲,男,博士研究生。主要研究方向:高超声速气动热力学。Tel.:010-82317521,E-mail:sharphao_buaa@icloud.com;王京盈,男,博士,助理研究员。主要研究方向:高超声速气动热力学。Tel.:0531-88392890,E-mail:wjy_sdu@126.com

收稿日期: 2016-01-06

  修回日期: 2016-05-26

  网络出版日期: 2016-06-01

基金资助

国家自然科学基金(11372028)

Numerical simulation of electronic-electron energy nonequilibrium in high speed and high temperature flowfields

  • HAO Jiaao ,
  • WANG Jingying ,
  • GAO Zhenxun ,
  • JIANG Chongwen ,
  • LEE Chunhian
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    2. School of Energy and Power Engineering, Shandong University, Ji'nan 250100, China

Received date: 2016-01-06

  Revised date: 2016-05-26

  Online published: 2016-06-01

Supported by

National Natural Science Foundation of China (11372028)

摘要

采用描述电子能非平衡的三温度模型,结合11组分空气的化学反应模型,对多种高速高温热化学非平衡流场开展数值模拟,并与描述电子能平衡的两温度模型结果进行对比,研究电子能非平衡对高超声速流场特性的影响。圆球弹道靶试验算例表明电子能非平衡不影响激波脱体距离。RAM-C II飞行器的4个飞行工况算例表明,尽管两温度和三温度模型结果存在差异,但二者电子数密度分布的趋势和量级接近,均可与飞行试验数据保持一致,其中三温度模型的预测效果更好。FIRE II飞行器极高温流场模拟结果显示,电子能非平衡几乎不影响飞行器表面的对流传热。

本文引用格式

郝佳傲 , 王京盈 , 高振勋 , 蒋崇文 , 李椿萱 . 高速高温流场电子能非平衡的数值模拟[J]. 航空学报, 2016 , 37(11) : 3340 -3350 . DOI: 10.7527/S1000-6893.2016.0153

Abstract

High speed and high temperature flowfields around several configurations are numerically investigated using different multi-temperature models and an 11-species finite rate chemical reaction model. The flowfields are computed by a multi-block finite volume CFD code. The three-temperature model including the process of electronic-electron nonequilibrium, together with the two-temperature model based on equilibrium electronic-electron state, are incorporated into the code. For the case of sphere ballistic range experiment, it is found that the shock standoff distance is not affected by the electronic-electron nonequilibrium. Numerical results of four flight condition for RAM-C II aircraft indicate that the distributions of electron number density predicted by the two multi-temperature models vary in a similar trend, whose values are in the same order of magnitude. Both results show good agreements with flight experimental data. The three-temperature model is capable of providing more accurate results than the two-temperature model. Numerical results of the FIRE II case yield similar distributions of surface heat flux by utilizing the three-temperature model and the two-temperature model, respectively.

参考文献

[1] WALBERG G A. A survey of aeroassisted orbit transfer[J]. Journal of Spacecraft and Rockets, 1985, 22(1):3-18.
[2] GNOFFO P A. Code calibration program in support of the aeroassist flight experiment[J]. Journal of Spacecraft and Rockets, 1990, 27(2):131-142.
[3] WRIGHT M J, PRABHU D K, MARTINEZ E R. Analysis of Apollo command module afterbody heating Part I:AS-202[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(1):16-30.
[4] MARTIN A, BOYD I D. Modeling of heat transfer attenuation by ablative gases during the stardust reentry[J]. Journal of Thermophysics and Heat Transfer, 2015, 29(3):450-466.
[5] CANDLER G V, MACCORMACK R W. The computation of hypersonic ionized flows in chemical and thermal nonequilibrium:AIAA-1988-0511[R]. Reston:AIAA, 1988.
[6] KIM M, GÜLHAN A, BOYD I D. Modeling of electron energy phenomena in hypersonic flows[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(2):244-257.
[7] FARBAR E, BOYD I D, MARTIN A. Numerical prediction of hypersonic flowfields including effects of electron translational nonequilibrium[J]. Journal of Thermophysics and Heat Transfer, 2013, 27(4):593-606.
[8] APPLETON J P, BRAY K N C. The conservation equations for a nonequilibrium plasma[J]. Journal of Fluid Mechanics, 1964, 20(4):659-672.
[9] LEE J H. Basic governing equations for the flight regimes of aeroassisted orbital transfer vehicles:AIAA-1984-1729[R]. Reston:AIAA, 1984.
[10] GNOFFO P A, GUPTA R N, SHINN J L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium:NASA TP-2867[R]. Washington D. C.:NASA, 1989.
[11] VINCENTI W G, KRUGER C H. Introduction to physical gas dynamics[M]. Malabar:Krieger Publishing Company, 1965.
[12] MILLIKAN R C, WHITE D R. Systematics of vibrational relaxation[J]. Journal of Chemical Physics, 1963, 39(12):3209-3213.
[13] PARK C. Nonequilibrium hypersonic aerothermodynamics[M]. New York:Wiley, 1990.
[14] SCALABRIN L C. Numerical simulation of weakly ionized hypersonic flow over reentry capsules[D]. Ann Arbor:University of Michigan, 2007.
[15] PARK C. Two-temperature interpretation of dissociation rate data for N2 and O2:AIAA-1988-0458[R]. Reston:AIAA, 1988.
[16] SUTTON K, GNOFFO P A. Multi-component diffusion with application to computational aerothermodynamics:AIAA-1998-2575[R]. Reston:AIAA, 1998.
[17] GOSSE R, CANDLER G. Diffusion flux modeling:Application to direct entry problems:AIAA-2005-0389[R]. Reston:AIAA, 2005.
[18] GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000K:NASA RP-1232[R]. Washington D. C.:NASA, 1990.
[19] PALMER G, WRIGHT M J. Comparison of methods to compute high-temperature gas viscosity[J]. Journal of Thermophysics and Heat Transfer, 2003, 17(2):232-239.
[20] WRIGHT M J, BOSE D, PALMER G E, et al. Recommended collision integrals for transport property computations, Part 1:Air species[J]. AIAA Journal, 2005, 43(12):2558-2564.
[21] HASH D, OLEJNICZAK J, WRIGHT M, et al. FIRE II calculations for hypersonic nonequilibrium aerothermodynamics code verification:DPLR, LAURA, and US3D:AIAA-2007-0605[R]. Reston:AIAA, 2007.
[22] WANG J Y, GAO Z X, LEE C H. An decoupled procedure for convection-radiation simulation in scramjets[J]. Science China:Technological Science, 2014, 57(12):2551-2566.
[23] HAO J A, WANG J Y, LEE C H. Numerical study of hypersonic flows over reentry configurations with different chemical nonequilibrium models[J]. Acta Astronautica, 2016, 126:1-10.
[24] MACCORMACK R W. Numerical computation of compressible and viscous flow[M]. Reston:AIAA, 2014.
[25] VAN LEER B. Towards the ultimate conservative difference scheme[J]. Journal of Computational Physics, 1979, 32(1):101-136.
[26] WRIGHT M J, BOSE D, CANDLER G V. A data-parallel line relaxation method for the Navier-Stokes equations[J]. AIAA Journal, 1998, 36(9):1603-1609.
[27] HOLLIS B R, PRABHU D K. Assessment of laminar, convective aeroheating prediction uncertainties for Mars entry vehicles:AIAA-2011-3144[R]. Reston:AIAA, 2011.
[28] BLAZEK J. Computational fluid dynamics principles and applications[M]. 2nd ed. Oxford:Elsevier, 2005.
[29] LOBB R K. Experimental measurement of shock detachment distance on spheres fired in air at hypervelocities[C]//The High Temperature Aspects of Hypersonic Flow. New York:Pergammon, 1964.
[30] JONES W L, CROSS A E. Electrostatic-probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second:NASA TN D-6617[R]. Washington D. C.:NASA, 1972.
[31] CAUCHON D L. Radiative heating results from the Fire II flight experiment at a reentry velocity of 11.4 kilometers per second:NASA TM X-1402[R]. Washington D. C.:NASA, 1967.
[32] WRIGHT M, LOOMIS M, PAPADOPOULOS P. Aerothermal analysis of the project Fire II afterbody flow[J]. Journal of Thermophysics and Heat Transfer, 2003, 17(2):240-249.

文章导航

/