等离子体气动激励改善增升装置气动性能的试验
收稿日期: 2016-02-03
修回日期: 2016-04-23
网络出版日期: 2016-05-11
基金资助
国家自然科学基金(51207169,51276197,61503302);中国博士后科学基金(2014M562446);陕西省自然科学基金(2015JM1001)
Test of high lift system flow control by plasma aerodynamic actuation
Received date: 2016-02-03
Revised date: 2016-04-23
Online published: 2016-05-11
Supported by
National Natural Science Foundation of China (51207169, 51276197, 61503302);China Postdoctoral Science Foundation (2014M562446);Natural Science Foundation of Shaanxi Province (2015JM1001)
针对流动分离导致飞机增升装置气动性能下降的问题,进行了脉冲等离子体气动激励抑制增升装置流动分离的试验。研究了等离子体气动激励的频率、占空比及激励位置等参数对流动控制效果的影响。研究结果表明:等离子体气动激励通过加速近壁面附面层,增强附面层内的能量掺混,可有效抑制主翼和襟翼表面的流动分离,改善增升装置气动性能。在主翼前缘施加激励,可有效控制主翼表面大迎角下的失速分离,最大升力系数增大18.1%、临界失速攻角提高4°;在襟翼前缘施加激励,可有效抑制襟翼表面的流动分离,显著减小阻力,在4°迎角下,将试验模型阻力系数减小了28.7%,升力系数提高了7.1%。占空比对控制效果有较大影响,当占空比为10%~30%时,激励的非定常性更强,控制效果最好;占空比为50%的控制效果次之,占空比为100%时的控制效果最差。来流速度越高,逆压梯度越大,流动分离更难被抑制,控制效果也变差。该研究为在增升装置上应用等离子体流动控制技术提供了理论和方法的基础。
梁华 , 吴云 , 李军 , 韩孟虎 , 马杰 . 等离子体气动激励改善增升装置气动性能的试验[J]. 航空学报, 2016 , 37(8) : 2603 -2613 . DOI: 10.7527/S1000-6893.2016.0131
Flow separation on high lift systems will result in the aerodynamic characteristic deterioration. Wind tunnel test of high lift system flow separation control by plasma aerodynamic actuation were conducted. The effects of actuation parameters such as pulse frequency and duty cycle and actuation position were investigated. The test results show that plasma aerodynamic actuation can suppress flow separation and improve aerodynamic characteristic for high lift system by inducing flow acceleration and enhancing energy mixing in boundary layer. When the actuation is operated on the leading edge of the main airfoil, the stall separation at high angle of attacks can be suppressed effectively. The maximal lift coefficient and the stall angle of attack are increased by 18.1% an 4° respectively. When the actuation is operated on the leading edge of the flap, the aerodynamic characteristics at small angles of attack can be improved effectively. The lift coefficient of the tested model is increased by 7.1% and the drag coefficient is reduced by 28.7% after actuation at an angle of attack of 4°. The duty cycle is important in flow control. When the duty cycle is 10%~30%, the actuation is characterized by its intense unsteady property and the flow control effects are better than that of 50%. The control effects are the worst when the duty cycle is 100%. The flow separation is hard to control at higher inflow velocities for its strong reverse pressure gradient. The investigation can lay a foundation for the application of plasma flow control technology on high life systems.
Key words: high lift system; plasma; aerodynamic actuation; flow separation; flow control
[1] WANG J J, LI Y C, CHOI K S. Gurney flap-lift enhancement, mechanisms and applications[J]. Progress in Aerospace Sciences, 2008, 44(1):22-47.
[2] MELTON L P, SCHAEFFLERS N W, LIN J C. High-lift system for a supercritical airfoil:Simplified by active flow control:AIAA-2007-0707[R]. Reston:AIAA, 2007.
[3] LIN J C. Control of turbulent boundary-layer separation using micro-vortex generators:AIAA-1999-3404[R]. Reston:AIAA, 1999.
[4] 褚胡冰, 陈迎春, 张彬乾, 等. 增升装置微型涡流发生器数值模拟方法研究[J]. 航空学报, 2012, 33(1):11-21. CHU H B, CHEN Y C, ZHANG B Q, et al. Investigation of numerical simulation technique for micro vortex generators applied to high lift system[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1):11-21(in Chinese).
[5] 朱奇亮, 高永卫, 叶正寅. 不同声激励方式对多段翼型升力特性的影响[J]. 航空工程进展, 2013, 4(2):232-236. ZHU Q L, GAO Y W, YE Z Y. Influence of the different acoustic excitations on lift characteristic of a multi-element airfoil[J]. Advances in Aeronautical Science and Engineering, 2013, 4(2):232-236(in Chinese).
[6] TIMO K, VLAD C, RALF R, et al. Active flow separation control on a high-lift wing-body configuration part 1:Baseline flow and constant blowing:AIAA-2011-3168[R]. Reston:AIAA, 2011.
[7] VLAD C, TIMO K, RALF R, et al. Active flow separation control on a high-lift wing-body configuration:Part 2:The pulsed blowing application:AIAA-2011-3169[R]. Reston:AIAA, 2011.
[8] 焦予秦, 陆岩. 多段翼型吹气流动分离控制研究[J].应用力学学报,2015, 32(2):215-220. JIAO Y Q, LU Y. Research on flow separation control on multi-element airfoil using air-blowing[J]. Chinese Journal of Applied Mechanics, 2015, 32(2):215-220(in Chinese).
[9] SANG H K, CHONGAM K. Separation control on NACA23012 using synthetic jet:AIAA-2006-2853[R]. Reston:AIAA, 2006.
[10] CORKE T C, ENLOE C L, WILKINSON S P. Dielectric barrier discharge plasma actuators for flow control[J]. Annual Review of Fluid Mechanics, 2010, 42(1):505-529.
[11] LI Y H, WU Y, LI J. Review of the investigation on plasma flow control in China[J]. International Journal of Flow Control, 2012, 4(12):1-17.
[12] WANG J J, CHOI K S, FENG L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62(1):52-78.
[13] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and Outlook of Plasma Flow Control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese).
[14] ADAMOVICH I V, LITTLE J, NISHIHARA M, et al. Nanosecond pulse surface discharges for high-speed flow control:AIAA-2012-3137[R]. Reston:AIAA, 2012.
[15] DAWSON R, LITTLE J. Characterization of nanosecond pulse driven dielectric barrier discharge plasma actuators for aerodynamic flow control[J]. Journal of Applied Physics, 2013, 113(1):103302.
[16] DAWSON R A, LITTLE J. Effects of pulse polarity on nanosecond pulse driven dielectric barrier discharge plasma actuators[J]. Journal of Applied Physics, 2014, 115(1):043306.
[17] LITTLE J, NISHIHARA M, ADAMOVICH I V, et al. High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator[J]. Experiments in Fluids, 2010, 48(3):521-537.
[18] LITTLE J, SAMIMY M. High-Lift airfoil separation with dielectric barrier discharge plasma actuation[J]. AIAA Journal, 2010, 48(12):2884-2898.
[19] 王万波, 章荣平, 黄宗波, 等. 等离子体激励用于两段翼型增升的试验研究[J].空气动力学学报,2012, 31(1):64-68. WANG W B, ZHANG R P, HUANG Z B, et al. Test research of two-element airfoil lift enhancement by plasma actuator[J]. Acta Aerodynamica Sinica, 2012, 31(1):64-68(in Chinese).
[20] 冯立好, 王晋军, CHOI K S. 等离子体环量控制翼型增升的试验研究[J]. 力学学报, 2013, 45(6):815-821. FENG L H, WANG J J, CHOI K S. Experimental investugation on lift increment of a plasma circulation control airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6):815-821(in Chinese).
[21] 李应红, 梁华, 马清源, 等. 脉冲等离子体气动激励抑制翼型吸力面流动分离的试验研究[J]. 航空学报, 2008, 29(6):1429-1435. LI Y H, LIANG H, MA Q Y, et al. Experimental Investigation on Airfoil Suction Side Flow Separation Suppression by Pulse Plasma Aerodynamic Actuation. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1429-1435(in Chinese).
[22] 李应红, 吴云, 梁华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理[J]. 科学通报, 2010, 55(11):3060-3068. LI Y H,WU Y,LIANG H,et al. The mechanism of plasma shock flow control for enhancing flow separation control capability[J]. Chinese Science Bulletin, 2010, 55(31):3060-3068(in Chinese).
[23] 梁华. 翼型等离子体流动控制研究[D]. 西安:空军工程大学, 2009:74-89. LIANG H. Investigation of airfoil plasma flow control[D]. Xi'an:Airforce Engineering University, 2009:74-89(in Chinese).
[24] 梁华, 李应红, 宋慧敏, 等. 等离子体气动激励诱导空气流动的PIV测试研究[J]. 实验流体力学, 2011, 25(4):22-25. LIANG H,LI Y H,SONG H M, et al. PIV investigation on flow induced by plasma aerodynamic actuation[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4):22-25(in Chinese).
/
〈 | 〉 |