航空学报 > 2016, Vol. 37 Issue (8): 2603-2613   doi: 10.7527/S1000-6893.2016.0131

等离子体气动激励改善增升装置气动性能的试验

梁华1,2, 吴云1, 李军1, 韩孟虎1, 马杰1   

  1. 1. 空军工程大学 航空航天工程学院, 西安 710038;
    2. 西北工业大学 航空学院, 西安 710072
  • 收稿日期:2016-02-03 修回日期:2016-04-23 出版日期:2016-08-15 发布日期:2016-05-11
  • 通讯作者: 梁华,Tel.:029-84787527-612。E-mail:lianghua82702@126.com E-mail:lianghua82702@126.com
  • 作者简介:梁华,男,博士,讲师。主要研究方向:等离子体流动控制。Tel:029-84787527-612。E-mail:lianghua82702@126.com
  • 基金资助:

    国家自然科学基金(51207169,51276197,61503302);中国博士后科学基金(2014M562446);陕西省自然科学基金(2015JM1001)

Test of high lift system flow control by plasma aerodynamic actuation

LIANG Hua1,2, WU Yun1, LI Jun1, HAN Menghu1, MA Jie1   

  1. 1. College of Aeronautics and Astronautics Engineering, Airforce Engineering University, Xi'an 710038, China;
    2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2016-02-03 Revised:2016-04-23 Online:2016-08-15 Published:2016-05-11
  • Supported by:

    National Natural Science Foundation of China (51207169, 51276197, 61503302);China Postdoctoral Science Foundation (2014M562446);Natural Science Foundation of Shaanxi Province (2015JM1001)

摘要:

针对流动分离导致飞机增升装置气动性能下降的问题,进行了脉冲等离子体气动激励抑制增升装置流动分离的试验。研究了等离子体气动激励的频率、占空比及激励位置等参数对流动控制效果的影响。研究结果表明:等离子体气动激励通过加速近壁面附面层,增强附面层内的能量掺混,可有效抑制主翼和襟翼表面的流动分离,改善增升装置气动性能。在主翼前缘施加激励,可有效控制主翼表面大迎角下的失速分离,最大升力系数增大18.1%、临界失速攻角提高4°;在襟翼前缘施加激励,可有效抑制襟翼表面的流动分离,显著减小阻力,在4°迎角下,将试验模型阻力系数减小了28.7%,升力系数提高了7.1%。占空比对控制效果有较大影响,当占空比为10%~30%时,激励的非定常性更强,控制效果最好;占空比为50%的控制效果次之,占空比为100%时的控制效果最差。来流速度越高,逆压梯度越大,流动分离更难被抑制,控制效果也变差。该研究为在增升装置上应用等离子体流动控制技术提供了理论和方法的基础。

关键词: 增升装置, 等离子体, 气动激励, 流动分离, 流动控制

Abstract:

Flow separation on high lift systems will result in the aerodynamic characteristic deterioration. Wind tunnel test of high lift system flow separation control by plasma aerodynamic actuation were conducted. The effects of actuation parameters such as pulse frequency and duty cycle and actuation position were investigated. The test results show that plasma aerodynamic actuation can suppress flow separation and improve aerodynamic characteristic for high lift system by inducing flow acceleration and enhancing energy mixing in boundary layer. When the actuation is operated on the leading edge of the main airfoil, the stall separation at high angle of attacks can be suppressed effectively. The maximal lift coefficient and the stall angle of attack are increased by 18.1% an 4° respectively. When the actuation is operated on the leading edge of the flap, the aerodynamic characteristics at small angles of attack can be improved effectively. The lift coefficient of the tested model is increased by 7.1% and the drag coefficient is reduced by 28.7% after actuation at an angle of attack of 4°. The duty cycle is important in flow control. When the duty cycle is 10%~30%, the actuation is characterized by its intense unsteady property and the flow control effects are better than that of 50%. The control effects are the worst when the duty cycle is 100%. The flow separation is hard to control at higher inflow velocities for its strong reverse pressure gradient. The investigation can lay a foundation for the application of plasma flow control technology on high life systems.

Key words: high lift system, plasma, aerodynamic actuation, flow separation, flow control

中图分类号: