流体力学与飞行力学

串联式TBCC进气道模态转换模拟器设计及其特性分析

  • 刘君 ,
  • 袁化成 ,
  • 葛宁
展开
  • 南京航空航天大学 能源与动力学院 江苏省航空动力系统重点实验室, 南京 210016
刘君,男,博士研究生。主要研究方向:组合动力进气道设计及仿真。Tel.:025-84892200-2415,E-mail:liujunnever@163.com;袁化成,男,博士,副教授。主要研究方向:高超声速进气道设计、仿真及试验技术。Tel.:025-84892200-2415,E-mail:yuanhuacheng@nuaa.edu.cn;葛宁,男,博士,教授。主要研究方向:气轮机动力学及设计。Tel.:025-84892200-2613,E-mail:gening@nuaa.edu.cn

收稿日期: 2016-01-18

  修回日期: 2016-03-28

  网络出版日期: 2016-03-29

基金资助

航空科学基金(2015ZB52016);中央高校基本科研业务费(NS2015025)

Design and flow characteristics analysis of mode transition simulator for tandem type TBCC inlet

  • LIU Jun ,
  • YUAN Huacheng ,
  • GE Ning
Expand
  • Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2016-01-18

  Revised date: 2016-03-28

  Online published: 2016-03-29

Supported by

Aeronautical Science Foundation of China (2015ZB52016); the Fundamental Research Funds for the Central Universities (NS2015025)

摘要

为了实现涡轮基组合循环(TBCC)推进系统平稳模态转换过程的模拟,在前期风洞试验研究的基础上对串联式TBCC进气道模态转换模拟器进行重新设计。采用线性化及非对称的思路对该模拟器进行设计并对其特性展开数值仿真研究。结果表明:该模拟器不仅需要模拟发动机工况改变引起的背压变化,而且能通过流通截面面积线性变化,实现两个通道的流量分配。该装置的特点是能保证模态转换过程中每一点的涡轮/冲压通道的总堵塞比不变,使本文所研究的进气道在总堵塞比保持为65%时进行模态转换,结尾激波基本维持在喉道等直段内且进气道出口马赫数基本维持在0.30,流量系数基本为0.45,涡轮/冲压通道流量呈线性变化,与预期目标一致。

本文引用格式

刘君 , 袁化成 , 葛宁 . 串联式TBCC进气道模态转换模拟器设计及其特性分析[J]. 航空学报, 2016 , 37(12) : 3675 -3684 . DOI: 10.7527/S1000-6893.2016.0103

Abstract

In order to simulate the smooth mode transition of turbine based combined cycle (TBCC) propulsion system, the mode transition simulator for tandem type TBCC inlet is redesigned based on the experiences learned from the high speed wind tunnel test. The linear and asymmetric methods are then used to design this simulator, and its flow characteristics is analyzed through numerical simulation. The results indicate that the simulator is used not only to simulate the change of back-pressure caused by the change of engine operation condition, but also to distribute the mass flow into the two flowpaths linearly during the mode transition. The new simulator can keep the sum of the throttle ratios of turbojet/ramjet flowpaths as a constant in every moment during the process. For the inlet discussed in this paper, when the total throttle ratio is equal to 65% during the mode transition, the terminal shock locates in the throat of the TBCC inlet, the Mach number at the aerodynamic interface plane of this inlet is basically equal to 0.30, the flow ratio of this section is basically equal to 0.45, and the flow ratio into two flowpaths is distributed linearly. This simulator thus can meet the needs of expected goal.

参考文献

[1] 吴颖川, 贺元元, 贺伟, 等. 吸气式高超声速飞行器机体推进一体化技术研究进展[J]. 航空学报, 2015, 36(1):245-260. WU Y C, HE Y Y, HE W, el al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):245-260(in Chinese).
[2] RONDEAU C M, JORRIS T R. X-51A scramjet demonstrator program waverider ground and flight test:ADA593742[R]. Virginia:Armed Services Technical Information Agency Documents, 2013.
[3] SOSOUNOV V A, TSKHOVREBOV M M, SOLONIN V I, et al. The study of experimental turboramjets:AIAA-1992-3720[R]. Reston:AIAA, 1992.
[4] 张华军, 郭荣伟, 李博. TBCC进气道研究现状及其关键技术[J]. 空气动力学报, 2010, 28(5):613-620. ZHANG H J, GUO R W, LI B. Research status of TBCC inlet and its key technologies[J]. Acta Aerodynamic Sinica, 2010, 28(5):613-620(in Chinese).
[5] SACHER P W. The engineering design of engine/airframe integration for the Sänger fully reusable space transportation system:ADA592434[R]. Virginia:Armed Services Technical Information Agency Documents, 2010.
[6] LEDERER R, VOSS N, SCHWAB R R. Hypersonic airbreathing propulsion activities for Sänger:AIAA-1991-5040[R]. Reston:AIAA, 1991.
[7] MIYAGI H, MIYAGAWA H, MONJI T, et al. Combined cycle engine research in Japanese HYPR project:AIAA-1995-2751[R]. Reston:AIAA, 1995.
[8] MIYAGI H, KIMURA H, KISHI K, et al. Combined cycle engine research in Japanese HYPR program:AIAA-1998-3278[R]. Reston:AIAA, 1998.
[9] TAKAO O, YOSHINARI E, HIDEMASA N, et al. Experimental approach to HYPR Mach 5 ramjet propulsion system:AIAA-1998-3277[R]. Reston:AIAA, 1998.
[10] SAUNDERS J D, SLATER J W, DIPPOLD V, et al. Inlet mode transition screening test for a turbine-based combined-cycle propulsion system[J]. Jannaf, 2008.
[11] ANDRE W M, ASHWANI K G, LEWIS M J. Critical issues in TBCC modeling:AIAA-2004-3827[R]. Reston:AIAA, 2004.
[12] SAUNDERS J D, STUEBER T J, THOMAS S R, et al. Testing of the NASA hypersonic project combined cycle engine large scale inlet mode transition experiment (CCE LIMX):NASA/TM-2012-217217[R]. Washington, D.C.:NASA, 2012.
[13] 陈敏, 唐海龙, 刘大响, 等. 最大飞行马赫数3.5的吸气式动力方案初步研究[J]. 航空动力学报, 2009, 24(7):1564-1569. CHEN M, TANG H L, LIU D X, et al. Conceptual design of Mach number 3.5 air-breathing propulsion system[J]. Journal of Aerospace Power, 2009, 24(7):1564-1569(in Chinese).
[14] 陈敏, 唐海龙, 朱大明, 等. 高超声速串联式组合动力装置方案[J]. 北京航空航天大学学报, 2007, 33(3):265-268. CHEN M, TANG H L, ZHU D M, et al. Hypersonic combined cycle engine concept with tandem layout[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(3):265-268(in Chinese).
[15] CHEN M, ZHU Z L, ZHU D M, et al. Performance analysis tool for turbine based combined cycle engine concept[J]. Journal of Astronautics, 2006, 27(5):854-859.
[16] 刘增文, 王占学, 蔡元虎, 等. 涡轮基组合循环发动机性能数值模拟[J]. 推进技术, 2009, 30(1):1-5. LIU Z W, WANG Z X, CAI Y H, et al. Numerical simulation of performance for turbine based combined cycle propulsion system[J]. Journal of Propulsion Technology, 2009, 30(1):1-5(in Chinese).
[17] 黄红超, 王占学, 蔡元虎. 基于推力连续准则的小型涡轮冲压组合发动机模态转换过程分析[J]. 航空动力学报, 2009, 24(12):2756-2762. HUANG H C, WANG Z X, CAI Y H. Analysis of mode transition with thrust smoothing of small turbine/ramjet combined cycle engine[J]. Journal of Aerospace Power, 2009, 24(12):2756-2762(in Chinese).
[18] 袁化成, 刘君, 华正旭, 等. 一种串联式TBCC变几何进气道气动设计及实验验证[C]//第十七届中国空气动力学物理气体动力学学术交流会暨第三届高超声速冲压发动机内外流耦合流动研讨会论文集,2015. YUAN H C, LIU J, HUA Z X, et al. The design and experiment investigation of variable geometry TBCC inlet of tandem type[C]//17th Aerodynamics & Physics Gas Dynamics Academic Conference of China, 2015(in Chinese).
[19] 王亚岗, 袁化成, 郭荣伟. TBCC用轴对称进气道流量控制技术研究[J]. 推进技术, 2013, 34(12):1606-1615. WANG Y G, YUAN H C, GUO R W. Research on mass-flow controlling technology of TBCC axisymmetric inlet[J].Journal of Propulsion Technology, 2013, 34(12):1606-1615(in Chinese).
[20] 张华军, 刘兴国, 郭荣伟, 等. TBCC进气道涡轮通道扩张段设计及涡轮模态特性[J]. 航空动力学报, 2014, 29(1):181-191. ZHANG H J, LIU X G, GUO R W, et al. Design of turbo diffuser for TBCC inlet and characteristics of turbo mode[J]. Journal of Aerospace Power, 2014, 29(1):181-191(in Chinese).
[21] 李璞, 郭荣伟. 一种带前体的高超声速矩转圆形进气道研究[J]. 航空学报, 2009, 30(4):625-629. LI P, GUO R W. Investigation of a hypersonic inlet with rectangular-to-circular shape transition and forebody[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4):625-629(in Chinese).

文章导航

/