材料工程与机械制造

铝合金厚板FSW焊缝成形及金属流动行为分析

  • 毛育青 ,
  • 柯黎明 ,
  • 刘奋成 ,
  • 陈玉华
展开
  • 1. 南昌航空大学 轻合金加工科学与技术国防重点学科实验室, 南昌 330063;
    2. 西北工业大学 凝固技术国家重点实验室, 西安 710072
毛育青,男,博士研究生。主要研究方向:先进连接技术,搅拌摩擦焊,金属基复合材料制备。E-mail:maoyuqing-8888@163.com;柯黎明,男,博士,教授,博士生导师。主要研究方向:先进连接技术,搅拌摩擦焊,钎焊,扩散焊及金属基复合材料制备。Tel.:0791-83863015,E-mail:liming_ke@126.com;刘奋成,男,博士,副教授。主要研究方向:激光增材制造(3D打印),钎焊。Tel.:0791-83863028,E-mail:fencheng999@163.com;陈玉华,男,博士,教授。主要研究方向:激光焊,搅拌摩擦焊。Tel.:0791-83863023,E-mail:ch.yu.hu@163.com

收稿日期: 2016-01-11

  修回日期: 2016-03-02

  网络出版日期: 2016-03-11

基金资助

国家自然科学基金(51265043,51265042);江西省高等学校科技落地计划(KJLD13055,KJLD12074)

Weld formation and material flow behavior in FSW thick aluminum alloy plates

  • MAO Yuqing ,
  • KE Liming ,
  • LIU Fencheng ,
  • CHEN Yuhua
Expand
  • 1. National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China;
    2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2016-01-11

  Revised date: 2016-03-02

  Online published: 2016-03-11

Supported by

National Natural Science Foundation of China (51265043, 51265042); Landed Plan of Science and Technology in Colleges and Universities of Jiangxi Province (KGLD13055, KJLD12074)

摘要

采用三角平面圆锥形搅拌针焊接20 mm厚的铝板,分析工艺参数对焊缝成形及金属流动特征影响。随着旋转速度增加,单位时间内金属迁移量增大,焊核区面积增加,疏松区面积减小至消失;而过大的旋转速度反而使疏松缺陷再次出现。适当减小焊接速度,增大单位长度内焊缝热输入,改善焊缝成形,但焊接速度过小易导致焊缝上部受热过多,疏松区及内部孔洞变大。在合适的参数下焊接时,瞬时空腔的出现可使更多塑化金属绕搅拌针做圆周迁移,即提高了沿水平方向的“抽吸-挤压”效应,改善了金属流动性,减少甚至消除焊缝内部缺陷。

本文引用格式

毛育青 , 柯黎明 , 刘奋成 , 陈玉华 . 铝合金厚板FSW焊缝成形及金属流动行为分析[J]. 航空学报, 2016 , 37(11) : 3546 -3553 . DOI: 10.7527/S1000-6893.2016.0061

Abstract

7075-T6 aluminum alloys of a thickness of 20 mm are friction stir welded using a tapered pin with three flats, and the effect of process parameters on weld formation and local flow characteristic are investigated. With the increase of the rotation speed, the area of nugget increases due to the increase of the amount of plastic metal migration in unit time, and the area of loose zone decreases and even disappears. When the rotation speed is too high, the loose defect emerges again. Decreasing the welding speed appropriately can improve the weld quality by increasing the heat input in unit length, and the defect is gone. A lower welding speed causes a bigger loose zone and many internal voids because of more heat input. In the welding under appropriate parameters, more plastic materials horizontally migrate around the rotary pin with the appearance of the temporary cavity, and the "sucking-extruding" effect along the horizontal direction can thus be enhanced, improving the flowability and eliminating the internal defects.

参考文献

[1] MAO Y Q, KE L M, LIU F C, et al. Effect of tool pin eccentricity on microstructure and mechanical properties in friction stir welded 7075 aluminum alloy thick plate[J]. Materials and Design, 2014, 62:334-343.
[2] CABIBBO M, FORCELLESE A, SIMONCINI M, et al. Effect of welding motion and pre-/post-annealing of friction stir welded AA5754 joints[J]. Materials and Design, 2016, 93:146-159.
[3] LIU X C, WU C S. Material flow in ultrasonic vibration enhanced friction stir welding[J]. Journal of Materials Processing Technology, 2015, 225:32-44.
[4] HU Z L, WANG X S, PANG Q, et al. The effect of postprocessing on tensile property and microstructure evolution of friction stir welding aluminum alloy joint[J]. Materials Characterization, 2015, 99:180-187.
[5] DORBANE A, MANSOOR B, AYOUB G, et al. Mechanical, microstructural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061[J]. Materials Science and Engineering A, 2016, 651:720-733.
[6] MIRONOV S, ONUMA T, SATO Y S, et al. Microstructure evolution during friction-stir welding of AZ31 magnesium alloy[J]. Acta Materialia, 2015, 100:301-312.
[7] MIRONOV S, MASAKI K, SATO Y S, et al. Relation between material flow and abnormal grain growth in friction-stir welds[J]. Scripta Materialia, 2012, 67:983-986.
[8] QIAN J W, LI J L, SUN F, et al. An analytical model to optimize rotation speed and travel speed of friction stir welding for defect-free joints[J]. Scripta Materialia, 2013, 68(3-4):175-178.
[9] SHARMA C, DWIVEDI D K, KUMAR P. Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of AA7039 aluminum alloy[J]. Materials and Design, 2012, 36:379-390.
[10] 李宝华, 唐众民, 鄢江武, 等. 5A06铝合金厚板搅拌摩擦焊工艺研究[J]. 热加工工艺, 2011, 40(11):152-154. LI B H, TANG Z M, YAN J W, et al. Research on friction stir welding parameters of thick 5A06 aluminum alloy[J]. Hot Working Technology, 2011, 40(11):152-154(in Chinese).
[11] XU W F, LIU J H, LUAN G H, et al. Temperature evolution, microstructure and mechanical properties of friction stir welded thick 2219-O aluminum alloy joints[J]. Materials and Design, 2009, 30(6):1886-1893.
[12] CANADAY C T, MOORE MATTHEW A, TANG W, et al. Through thickness property variations in a thick plate AA7050 friction stir welded joint[J]. Materials Science and Engineering A, 2013, 559:678-682.
[13] MAO Y Q, KE L M, LIU F C, et al. Investigations on temperature distribution, microstructure evolution, and property variations along thickness in friction stir welded joints for thick AA7075-T6 plates[J/OL]. International Journal of Advanced Manufacturing Technology, (2015-12-03)[2016-01-07]. http://link.springer.com/article/10.1007/s00170-015-8182-z/doi/10.1007/s00170-015-8182-z.
[14] 柯黎明, 潘际銮, 邢丽, 等. 搅拌针形状对搅拌摩擦焊焊缝截面形貌的影响[J]. 焊接学报, 2007, 28(5):16-20. KE L M, PAN J L, XING L, et al. Influence of pin shape on weld transverse morphology in friction stir welding[J]. Transaction of the China Welding Institution, 2007, 28(5):16-20(in Chinese).
[15] LIN Y C, LIU J J, CHEN J N. Material flow tracking for various tool geometries during the friction stir spot welding process[J]. Journal of Materials Engineering and Performance, 2013, 22(13):3674-3683.
[16] JI S D, JIN Y Y, YUE Y M, et al. Effect of temperature on material transfer behavior at different stages of friction stir welded 7075-T6 aluminum alloy[J]. Journal of Materials Science and Technology, 2013, 29(10):955-960.
[17] MIDLING O T, OOSTERKAMP L D, BERSAAS J. Friction stir welding aluminum-process and applications[C]//Proceedings of INALCO-7, 2004:161-169.
[18] 柯黎明, 潘际銮, 邢丽, 等. 搅拌摩擦焊焊缝金属塑性流动的抽吸-挤压理论[J]. 机械工程学报, 2009, 45(4):89-94. KE L M, PAN J L, XING L, et al. Sucking-extruding theory for the material flow in friction stir welds[J]. Journal of Mechanical Engineering, 2009, 45(4):89-94(in Chinese).
[19] PRANGNELL P B, HEASON C P. Grain structure formation during friction stir welding observed by the ‘stop action technique’[J]. Acta Materialia, 2005, 53(11):3179-3192.
[20] MICHAEL B P, THOMAS G H, JOHN A B, et al. Residual stress measurements in a thick, dissimilar aluminum alloy friction stir weld[J]. Acta Materialia, 2006, 54(15):4013-4021.
[21] RAJAKUMAR S, MURALIDHARAN C, BALASUBRAMANIAN V. Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminum alloy joints[J]. Materials and Design, 2011, 32(2):535-549.
[22] CHEN Z W, CUI S. On the forming mechanism of banded structures in aluminium alloy friction stir welds[J]. Scripta Materialia, 2008, 58(5):417-420.

文章导航

/