马赫数可控的方转圆内收缩进气道非设计点工作特性
收稿日期: 2015-11-02
修回日期: 2016-03-01
网络出版日期: 2016-03-08
基金资助
国家自然科学基金(90916029,91116001)
Off-design performance characteristics of inward turning inlet with rectangular-to-circular shape transition with controlled Mach number distribution
Received date: 2015-11-02
Revised date: 2016-03-01
Online published: 2016-03-08
Supported by
National Natural Science Foundation of China (90916029, 91116001)
基于反正切马赫数分布的弥散反射激波中心体轴对称基准流场,设计了方转圆内收缩进气道,并对其进行风洞试验和数值仿真研究,获得该进气道非设计点(Ma=5.0和Ma=7.0)的工作特性和自起动特性。试验结果表明:进气道顶板压力分布具有反正切曲线特征,出口涡流区小且总体性能优良。Ma=5.0和Ma=7.0时出口总压恢复系数分别为0.647和0.443,对应的增压比分别为20.0和32.7。Ma=5.0时,进气道不但可以捕获约90%的自由来流,而且能够自起动(内收缩比高于Kantrowitz限制),下临界反压为64倍来流静压,对应的出口马赫数和总压恢复系数分别为1.32和0.409。上述结果表明,本文设计方法可以获得高性能的矩形转圆内收缩进气道。
李永洲 , 张堃元 , 孙迪 . 马赫数可控的方转圆内收缩进气道非设计点工作特性[J]. 航空学报, 2016 , 37(11) : 3263 -3272 . DOI: 10.7527/S1000-6893.2016.0060
Based on the axisymmetric basic flowfield of diffusing reflected shock center body with arc tangent Mach number distribution, an inward turning inlet with rectangular-to-circular shape transition is designed. Wind tunnel experiment and numerical simulation are conducted to obtain the off-design performance characteristics and self-starting characteristics. The experimental results indicate that the top wall pressure distribution is of arc tangent curve. The inlet has good overall performance and small vortex region at exit section. For Ma=5.0 and Ma=7.0, the total pressure recovery coefficient of exit section is 0.647 and 0.443, respectively, and the corresponding compression ratio is 20.0 and 32.7, respectively. For Ma=5.0, the inlet could capture about 90% of the free stream and self-start despite its internal contraction ratio being above the Kantrowitz limit; the lower critical back pressure of the inlet is about 64 times of the free stream static pressure, and the corresponding Mach number and total pressure recovery coefficient of exit section are 1.32 and 0.409, respectively. The results demonstrate that high-performance inward turning inlets with rectangular-to-circular shape transition can be designed by the method proposed in this paper.
[1] YOU Y C. An overview of the advantages and concerns of hypersonic inward turning inlets:AIAA-2011-2269[R]. Reston:AIAA, 2011.
[2] BILLIG F S, KOTHARI A. Streamline tracing:Technique for designing hypersonic vehicles[J]. Journal of Propulsion and Power, 2000, 16(3):465-471.
[3] TIAN C, LI N, GONG G H, et al. A parameterized geometry design method for inward turning inlet compatible waverider[J]. Chinese Journal of Aeronautics, 2013, 26(5):1135-1146.
[4] MALO-MOLINA F J, GAITONDE D V, EBRAHIMI H B, et al. Three-dimensional analysis of a supersonic combustor coupled to innovative inward-turning inlets[J]. AIAA Journal,2010, 48(3):572-582.
[5] BULMAN M J, SIEBENHAAR A. The rebirth of round hypersonic propulsion:AIAA-2006-5035[R]. Reston:AIAA, 2006.
[6] BILLIG F S, JACOBSEN L S. Comparison of planar and axisymmetric flow paths for hydrogen fueled space access vehicle:AIAA-2003-4407[R]. Reston:AIAA, 2003.
[7] SMART M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. AIAA Journal of Power and Propulsion, 1999, 15(3):408-416.
[8] SMART M K. Experimental testing of a hypersonic inlet with rectangular-to-elliptical shape transition:AIAA-1999-0085[R]. Reston:AIAA, 1999.
[9] GOLLAN R J, FERLEMANN P G. Investigation of REST-class hypersonic inlet designs:AIAA-2011-2254[R]. Reston:AIAA, 2011.
[10] SABEAN J W, LEWIS M J. Computational optimization of a hypersonic rectangular-to-circular inlet[J]. Journal of Propulsion and Power, 2001, 17(3):571-578.
[11] TAYLOR T, VAN WIE D. Performance analysis of hypersonic shape-changing inlets derived from morphing streamline traced flowpaths:AIAA-2008-2635[R]. Reston:AIAA, 2008.
[12] YOU Y C, LIANG D W, GUO R W. High enthalpy wind tunnel tests of three-dimensional section controllable internal waverider hypersonic inlet:AIAA-2009-0031[R]. Reston:AIAA, 2009.
[13] XIAO Y B, YUE L J, CHEN L H, et al. Iso-contraction-ratio methodology for the design of hypersonic inward turning inlets with shape transition:AIAA-2012-5978[R]. Reston:AIAA, 2012.
[14] 南向军, 张堃元, 金志光, 等. 矩形转圆形进气道马赫5正8° 攻角启动性能分析[J]. 南京航空航天大学学报, 2012, 44(2):146-151. NAN X J, ZHANG K Y, JIN Z G, et al. Start characteristics of hypersonic inlets with rectangular to circular shape transition at Ma5 with attack angle 8°[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2012, 44(2):146-151(in Chinese).
[15] MÖLDER S, SZPIRO J. Busemman inlet for hypersonic speeds[J]. Journal of Spacecraft and Rockets, 1966, 3(8):1303-1304.
[16] 贺旭照, 乐嘉陵, 宋文燕, 等. 基于轴对称喷管的三维内收缩进气道的设计与初步评估[J]. 推进技术, 2010, 31(2):147-152. HE X Z, LE J L, SONG W Y, et al. 3D inward turning inlet design basing on axisymmetric nozzle and its preliminary assessment[J]. Journal of Propulsion Technology, 2010, 31(2):147-152(in Chinese).
[17] 李永洲, 张堃元, 孙迪. 马赫数可控的方转圆高超声速内收缩进气道试验研究[J]. 航空学报, 2016, 37(10):2970-2979. LI Y Z, ZHANG K Y, SUN D. Experimental investigation on a hypersonic inward turning inlet of rectangular-to-circular shape transition with controlled Mach number distribution[J]. Acta Aeronautica et Astronamtica Sinica, 2016, 37(10):2970-2979(in Chinese).
[18] 李永洲, 张堃元, 罗蕾, 等. 高超声速内收缩进气道轴对称基准流场改进[J]. 航空动力学报, 2013, 28(11):2543-2552. LI Y Z, ZHANG K Y, LUO L, et al. Modified axisymmetric basic flowfield for hypersonic inward turning inlet[J]. Journal of Aerospace Power, 2013, 28(11):2543-2552(in Chinese).
[19] KANTROWITZ A, DONALDSON C. Preliminary investigation of supersonic diffusers:NACA-WR L-713[R]. Reston:NASA, 1945.
[20] REINARTZ B U, HERRMANN C D, BALLMANN B, et al. Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment[J]. Journal of Propulsion and Power, 2003, 19(5):868-875.
[21] 王翼. 高超声速进气道启动问题研究[D]. 长沙:国防科学技术大学, 2008. WANG Y. Investigation on the starting characteristics of hypersonic inlet[D]. Changsha:National University of Defense Technology, 2008(in Chinese).
[22] 刘凯礼. 高超声速进气道动/稳态攻角特性研究[D]. 南京:南京航空航天大学,2012. LIU K L. Research on aerodynamic characteristics of hypersonic inlets with dynamic/steady angle-of-attack[D]. Nanjing:Nanjing university of Aeronautics and Astronautics, 2012(in Chinese).
[23] KITAMURA E, MITANI T, SAKURANAKA N, et al. Evaluating the aerodynamic performance of scramjet engines by pressure measurement:AIAA-2003-7053[R]. Reston:AIAA, 2003.
[24] 王红, 马明明. 某型发动机空气流量计算影响因素研究[J]. 燃气涡轮试验与研究, 2010, 23(3):22-26. WANG H, MA M M. Study on the factors affecting airflow calculation of an aero-engine[J]. Gas Turbine Experiment and Research, 2010, 23(3):22-26(in Chinese).
[25] VAN WIE D M, KWOK F T, WALSH R F. Starting characteristics of supersonic inlets:AIAA-1996-2914[R]. Reston:AIAA, 1996.
/
〈 | 〉 |