流行力学与飞行力学

鸭式布局飞行器的翼体摇滚特性风洞试验

  • 魏德宸 ,
  • 史志伟 ,
  • 耿玺 ,
  • 刘超 ,
  • 昂海松
展开
  • 南京航空航天大学 航空宇航学院, 南京 210016
魏德宸 男,博士研究生。主要研究方向:飞行器大迎角气动特性,非定常空气动力学。Tel.:025-84896464 E-mail:weimoving@163.com;史志伟 男,博士,教授,博士生导师。主要研究方向:实验空气动力学,非定常空气动力学,流动控制。Tel.:025-84896464 E-mail:szwam@nuaa.edu.cn

收稿日期: 2015-12-31

  修回日期: 2016-01-11

  网络出版日期: 2016-02-22

基金资助

江苏高校优势学科建设工程资助项目

Wind tunnel test for wing-body rock of canard-configuration aircraft

  • WEI Dechen ,
  • SHI Zhiwei ,
  • GENG Xi ,
  • LIU Chao ,
  • ANG Haisong
Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-12-31

  Revised date: 2016-01-11

  Online published: 2016-02-22

Supported by

Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

为研究鸭式布局飞行器摇滚特性,设计了一种包括鸭翼、脊型前体、边条翼、主翼和垂尾的模型,进行了自由滚转、扰动滚转、静动态测力和烟线流场显示多种技术手段相结合的风洞试验。通过自由滚转和扰动滚转试验得到了该模型翼体摇滚的时间历程,静态测力和动导数测定验证了非极限环运动形式摇滚的发生。结果表明该鸭式布局模型摇滚不仅同侧存在多个摇滚平衡点,而且在临界俯仰角,摇滚过程中可能出现从一摇滚平衡点跳动至同侧另一摇滚平衡点的突变。通过流场显示技术得到该鸭式布局模型复杂流场的基本形态分布,并对滚转角为0°时的全机涡系干扰和摇滚形成机理进行了简要分析。

本文引用格式

魏德宸 , 史志伟 , 耿玺 , 刘超 , 昂海松 . 鸭式布局飞行器的翼体摇滚特性风洞试验[J]. 航空学报, 2016 , 37(10) : 3003 -3010 . DOI: 10.7527/S1000-6893.2016.0042

Abstract

In order to study wing-body rock of the canard-configuration aircraft, different methods including free rolling motion, applying disturbance to free rolling motion, static force balance test, dynamic derivative test and smoke wire technique are used for the model which has canard wing, chine forebody, strake wings, main wings and a vertical fin in the wind tunnel. The roll angle time history is obtained by free rolling motion and disturbed motion, and then non-limit cycle motion is verified by static force balance test and dynamic derivative test. The results show that rolling motions of the canard-configuration aircraft model have several different central angles in the same side, and one center can jump to the other at the critical pitch angles. Finally, the basic flow field distribution of the canard-configuration aircraft model is described by flow visualization technique. The vortex system interaction mechanism and cause of wing-body rock of model are briefly analyzed at 0°rock angle.

参考文献

[1] NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(2-3):185-248.
[2] KATZ J. Wing/vortex interactions and wing rock[J]. Progress in Aerospace Sciences, 1999, 35(7):727-750.
[3] GREEN B E, OTT J D. FA-18C to E wing morphing study for the abrupt-wing-stall program:AIAA-2003-0925[R]. Reston:AIAA, 2003.
[4] GREEN B E, OTT J D. FA-18C to E wing morphing study for the abrupt-wing-stall program[J]. Journal of Aircraft, 2005, 42(3):617-626.
[5] OWENS D B, CAPONE F J, HALL R M, et al. Free-to-roll analysis of abrupt wing stall on military aircraft at transonic speeds:AIAA-2003-0750[R]. Reston:AIAA, 2003.
[6] OWENS D B, CAPONE F J, HALL R M, et al. Transonic free-to-roll analysis of abrupt wing stall on military aircraft[J]. Journal of Aircraft, 2004, 41(3):474-484.
[7] OWENS D B, MCCONNEL J K, BRANDON J M, et al. Transonic free-to-roll analysis of the FA-18E and F-35 configurations:AIAA-2004-5053[R]. Reston:AIAA, 2004.
[8] OWENS D B, MCCONNEL J K, BRANDON J M, et al. Transonic free-to-roll analysis of the F-35 joint strike fighter aircraft[J]. Journal of Aircraft, 2006, 43(3):608-615.
[9] MITCHELL A M, MORTON S A, FORSYTHE J R, et al. Analysis of delta-wing vortical substructures using detached-eddy simulation[J]. AIAA Journal, 2006, 44(5):964-972.
[10] MORTON S A, STEENMAN M B, CUMMINGS R M, et al. Des resolution issues for vertical flows on a delta wing and an F-18C:AIAA-2003-1103[R]. Reston:AIAA, 2003.
[11] GURSUL I, WANG Z, VARDAKI E. Review of flow control mechanisms of leading-edge vortices[J]. Progress in Aerospace Sciences, 2007, 43(7-8):246-270.
[12] 孙海生. 飞机机翼摇滚低速风洞实验研究[J]. 流体力学实验与测量, 2000, 14(4):32-35. SUN H S. Investigation on wing rock in low speed wind tunnel for a fighter configuration[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(4):32-35(in Chinese).
[13] 王兵, 邓学蓥, 马宝峰, 等. 前体涡诱导机翼摇滚的人工转捩技术研究[J]. 空气动力学学报, 2010, 28(5):525-535. WANG B, DENG X Y, MA B F, et al. An artificial transition technique applied to wing rock induced by forebody vortex[J]. Acta Aerodynamica Sinica, 2010, 28(5):525-535(in Chinese).
[14] MA B F, DENG X Y, RONG Z, et al. The self-excited rolling oscillations induced by fore-body vortices[J]. Aerospace Science and Technology, 2015, 47:299-313.
[15] 陶洋, 赵忠良, 杨海泳. 翼身组合体摇滚特性高速试验研究[J]. 实验流体力学, 2011, 25(6):45-48. TAO Y, ZHAO Z L, YANG H Y. Investigation on wing rock of wing-body configuration at high speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6):45-48(in Chinese).
[16] 荣臻, 邓学蓥, 王兵, 等. 前体涡诱导双极限环摇滚流动特性的实验研究[J]. 实验流体力学, 2010, 24(3):20-24. RONG Z, DENG X Y, WANG B, et al. Experimental investigation on flow characteristics during double limit cycle oscillation induced by forebody vortex[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3):20-24(in Chinese).
[17] 韩冰, 徐敏, 李广宁, 等. 双三角翼及其翼身组合体的摇滚运动特性比较研究[J]. 航空学报, 2014, 35(2):417-426. HAN B, XU M, LI G N, et al. Comparative research on the dynamic rolling characteristics of double delta wing and wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):417-426(in Chinese).
[18] 史志伟, 李鹭扬, 程克明, 等. 基于混联机构的风洞大攻角动态实验装置:CN101929915B[P]. 2011-11-30. SHI Z W, LI L Y, CHENG K M, et al. Wind-tunnel high attack angle dynamic testing device based on hybrid mechanism:CN101929915B[P]. 2011-11-30(in Chinese).
[19] 杨小亮. 飞行器多自由度耦合摇滚运动数值模拟研究[D]. 长沙:国防科学技术大学, 2012. YANG X L. Numerical investigation of aircraft rock in multiple degrees of freedom[D]. Changsha:National University of Defense Technology, 2012(in Chinese).
[20] WEI L K, MA B F. Wing rock induced by a hemisphere-cylinder forebody[J]. Journal of Aircraft, 2014, 51(2):606-613.
[21] GRESHAM N T, WANG Z, GURSUL I. Vortex dynamics of free-to-roll slender and nonslender delta wings[J]. Journal of Aircraft, 2009, 47(1):292-302.
[22] TAKASHI M, SHIGERU Y, YOSHIAKI N. The effect of leading-edge profile of self-induced oscillation of 45-degree delta wings:AIAA-2000-4004[R]. Reston:AIAA, 2000.
[23] TAKASHI M, SHIGERU Y, YOSHIAKI N. Data-based modeling of non-slender wing rock:AIAA-2003-0738[R]. Reston:AIAA, 2003.
[24] 刘伟, 杨小亮, 张涵信, 等. 大攻角运动时的机翼摇滚问题研究综述[J]. 力学进展, 2008, 38(2):214-218. LIU W, YANG X L, ZHANG H X, et al. A review on investigations of wing rock problems under high angles of attack[J]. Advances in Mechanics, 2008, 38(2):214-218(in Chinese).
[25] BRANDON J M, NGUYEN L T. Experimental study of effects of forebody geometry on high angle of attack stability[J]. Journal of Aircraft, 1988, 25(7):591-597. M, MORTON S A, FORSYTHE J R, et al. Analysis of delta-wing vortical substructures using detached-eddy simulation [J]. AIAA Journal, 2006,
44(5):964-972.
[10] MORTON S A, STEENMAN M B, CUMMINGS R M, et al. Des resolution issues for vertical flows on a delta wing and an F-18C, AIAA-2003-1103 [R]. Reston: AIAA, 2003.
[11] GURSUL I, WANG Z, VARDAKI E. Review of flow control mechanisms of leading-edge vortices[J]. Progress in Aerospace Sciences, 2007, 43(7-8): 246-270.
[12] 孙海生. 飞机机翼摇滚低速风洞实验研究[J]. 流体力学实验与测量, 2000, 14(4): 32-35.
SUN H S. Investigation on wing rock in low speed wind tunnel for a fighter configuration[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(4): 32-35 (in Chinese).
[13] 王兵, 邓学蓥, 马宝峰, 等. 前体涡诱导机翼摇滚的人工转捩技术研究[J]. 空气动力学学报, 2010, 28(5): 525-535.
WANG B, DENG X Y, MA B F, et al. An artificial transition technique applied to wing rock induced by forebody vortex[J]. Acta Aerodynamica Sinica, 2010, 28(5): 525-535(in Chinese).
[14] 陶洋, 赵忠良, 杨海泳. 翼身组合体摇滚特性高速试验研究[J]. 实验流体力学, 2011, 25(6): 45-48.
TAO Y, ZHAO Z L, YANG H Y. Investigation on wing rock of wing-body configuration at high speed wind tunnel[J]. Journal of Experiments in Fluid Me-chanics, 2011, 25(6): 45-48(in Chinese).
[15] 荣 臻, 邓学蓥, 王 兵, 等. 前体涡诱导双极限环摇滚流动特性的实验研究[J]. 实验流体力学, 2010, 24(3): 20-24.
RONG Z, DENG X Y, WANG B, et al. Experimental investigation on flow characteristics during double limit cycle oscillation induced by forebody vortex[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 20-24(in Chinese).
[16] 韩冰, 徐敏, 李广宁, 等. 双三角翼及其翼身组合体的摇滚运动特性比较研究[J]. 航空学报, 2014, 35(2): 417-426.
HAN B, XU M, LI G N, et al. Comparative research on the dynamic rolling characteristics of double delta wing and wing-body configuration[J]. Acta Aeronau-tica Et Astronautica Sinica, 2014, 35(2): 417-426(in Chinese).
[17] 史志伟, 李鹭扬, 程克明, 等. 基于混联机构的风洞
大攻角动态实验装置: 中国, CN101929915B[P]. 2011-11-30.
SHI Z W, LI L Y, CHENG K M, et al. Wind-tunnel high attack angle dynamic testing device based on hy-brid mechanism: China, CN101929915B[P]. 2011-11-30(in Chinese).
[18] 杨小亮. 飞行器多自由度耦合摇滚运动数值模拟研究[D]. 长沙: 国防科学技术大学航天与材料工程学院, 2012.
YANG X L. Numerical investigation of aircraft rock in multiple degrees of freedom[D].Changsha: College of Aerospace and Material Engineering, National University of Defense Technology, 2012(in Chinese).
[19] TAKASHI M, SHIGERU Y, YOSHIAKI N. The effect of leading-edge profile of self-induced oscillation of 45-degree delta wings, AIAA-2000-4004[R]. Reston: AIAA, 2000.
[20] TAKASHI M, SHIGERU Y,YOSHIAKI N. Data-based modeling of non-slender wing rock, AIAA- 2003-738[R]. Reston: AIAA, 2003.
[21] 刘伟, 杨小亮, 张涵信, 等. 大攻角运动时的机翼摇滚问题研究综述[J]. 力学进展, 2008, 38(2): 214-218.
LIU W, YANG X L, ZHANG H X, et al. A review on investigations of wing rock problems under high angles of attack[J]. Advances in Mechanics, 2008, 38(2):214-218(in Chinese).
[22] BRANDON J M, NGUYEN L T. Experimental study of effects of forebody geometry on high angle of attack stability[J]. Journal of Aircraft, 1988, 25(7): 591-597.

文章导航

/