鸭式布局飞行器的翼体摇滚特性风洞试验
收稿日期: 2015-12-31
修回日期: 2016-01-11
网络出版日期: 2016-02-22
基金资助
江苏高校优势学科建设工程资助项目
Wind tunnel test for wing-body rock of canard-configuration aircraft
Received date: 2015-12-31
Revised date: 2016-01-11
Online published: 2016-02-22
Supported by
Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
魏德宸 , 史志伟 , 耿玺 , 刘超 , 昂海松 . 鸭式布局飞行器的翼体摇滚特性风洞试验[J]. 航空学报, 2016 , 37(10) : 3003 -3010 . DOI: 10.7527/S1000-6893.2016.0042
In order to study wing-body rock of the canard-configuration aircraft, different methods including free rolling motion, applying disturbance to free rolling motion, static force balance test, dynamic derivative test and smoke wire technique are used for the model which has canard wing, chine forebody, strake wings, main wings and a vertical fin in the wind tunnel. The roll angle time history is obtained by free rolling motion and disturbed motion, and then non-limit cycle motion is verified by static force balance test and dynamic derivative test. The results show that rolling motions of the canard-configuration aircraft model have several different central angles in the same side, and one center can jump to the other at the critical pitch angles. Finally, the basic flow field distribution of the canard-configuration aircraft model is described by flow visualization technique. The vortex system interaction mechanism and cause of wing-body rock of model are briefly analyzed at 0°rock angle.
Key words: canard wing; wing-body rock; non-limit cycle; dynamic derivative; flow visualization
[1] NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(2-3):185-248.
[2] KATZ J. Wing/vortex interactions and wing rock[J]. Progress in Aerospace Sciences, 1999, 35(7):727-750.
[3] GREEN B E, OTT J D. FA-18C to E wing morphing study for the abrupt-wing-stall program:AIAA-2003-0925[R]. Reston:AIAA, 2003.
[4] GREEN B E, OTT J D. FA-18C to E wing morphing study for the abrupt-wing-stall program[J]. Journal of Aircraft, 2005, 42(3):617-626.
[5] OWENS D B, CAPONE F J, HALL R M, et al. Free-to-roll analysis of abrupt wing stall on military aircraft at transonic speeds:AIAA-2003-0750[R]. Reston:AIAA, 2003.
[6] OWENS D B, CAPONE F J, HALL R M, et al. Transonic free-to-roll analysis of abrupt wing stall on military aircraft[J]. Journal of Aircraft, 2004, 41(3):474-484.
[7] OWENS D B, MCCONNEL J K, BRANDON J M, et al. Transonic free-to-roll analysis of the FA-18E and F-35 configurations:AIAA-2004-5053[R]. Reston:AIAA, 2004.
[8] OWENS D B, MCCONNEL J K, BRANDON J M, et al. Transonic free-to-roll analysis of the F-35 joint strike fighter aircraft[J]. Journal of Aircraft, 2006, 43(3):608-615.
[9] MITCHELL A M, MORTON S A, FORSYTHE J R, et al. Analysis of delta-wing vortical substructures using detached-eddy simulation[J]. AIAA Journal, 2006, 44(5):964-972.
[10] MORTON S A, STEENMAN M B, CUMMINGS R M, et al. Des resolution issues for vertical flows on a delta wing and an F-18C:AIAA-2003-1103[R]. Reston:AIAA, 2003.
[11] GURSUL I, WANG Z, VARDAKI E. Review of flow control mechanisms of leading-edge vortices[J]. Progress in Aerospace Sciences, 2007, 43(7-8):246-270.
[12] 孙海生. 飞机机翼摇滚低速风洞实验研究[J]. 流体力学实验与测量, 2000, 14(4):32-35. SUN H S. Investigation on wing rock in low speed wind tunnel for a fighter configuration[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(4):32-35(in Chinese).
[13] 王兵, 邓学蓥, 马宝峰, 等. 前体涡诱导机翼摇滚的人工转捩技术研究[J]. 空气动力学学报, 2010, 28(5):525-535. WANG B, DENG X Y, MA B F, et al. An artificial transition technique applied to wing rock induced by forebody vortex[J]. Acta Aerodynamica Sinica, 2010, 28(5):525-535(in Chinese).
[14] MA B F, DENG X Y, RONG Z, et al. The self-excited rolling oscillations induced by fore-body vortices[J]. Aerospace Science and Technology, 2015, 47:299-313.
[15] 陶洋, 赵忠良, 杨海泳. 翼身组合体摇滚特性高速试验研究[J]. 实验流体力学, 2011, 25(6):45-48. TAO Y, ZHAO Z L, YANG H Y. Investigation on wing rock of wing-body configuration at high speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6):45-48(in Chinese).
[16] 荣臻, 邓学蓥, 王兵, 等. 前体涡诱导双极限环摇滚流动特性的实验研究[J]. 实验流体力学, 2010, 24(3):20-24. RONG Z, DENG X Y, WANG B, et al. Experimental investigation on flow characteristics during double limit cycle oscillation induced by forebody vortex[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3):20-24(in Chinese).
[17] 韩冰, 徐敏, 李广宁, 等. 双三角翼及其翼身组合体的摇滚运动特性比较研究[J]. 航空学报, 2014, 35(2):417-426. HAN B, XU M, LI G N, et al. Comparative research on the dynamic rolling characteristics of double delta wing and wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):417-426(in Chinese).
[18] 史志伟, 李鹭扬, 程克明, 等. 基于混联机构的风洞大攻角动态实验装置:CN101929915B[P]. 2011-11-30. SHI Z W, LI L Y, CHENG K M, et al. Wind-tunnel high attack angle dynamic testing device based on hybrid mechanism:CN101929915B[P]. 2011-11-30(in Chinese).
[19] 杨小亮. 飞行器多自由度耦合摇滚运动数值模拟研究[D]. 长沙:国防科学技术大学, 2012. YANG X L. Numerical investigation of aircraft rock in multiple degrees of freedom[D]. Changsha:National University of Defense Technology, 2012(in Chinese).
[20] WEI L K, MA B F. Wing rock induced by a hemisphere-cylinder forebody[J]. Journal of Aircraft, 2014, 51(2):606-613.
[21] GRESHAM N T, WANG Z, GURSUL I. Vortex dynamics of free-to-roll slender and nonslender delta wings[J]. Journal of Aircraft, 2009, 47(1):292-302.
[22] TAKASHI M, SHIGERU Y, YOSHIAKI N. The effect of leading-edge profile of self-induced oscillation of 45-degree delta wings:AIAA-2000-4004[R]. Reston:AIAA, 2000.
[23] TAKASHI M, SHIGERU Y, YOSHIAKI N. Data-based modeling of non-slender wing rock:AIAA-2003-0738[R]. Reston:AIAA, 2003.
[24] 刘伟, 杨小亮, 张涵信, 等. 大攻角运动时的机翼摇滚问题研究综述[J]. 力学进展, 2008, 38(2):214-218. LIU W, YANG X L, ZHANG H X, et al. A review on investigations of wing rock problems under high angles of attack[J]. Advances in Mechanics, 2008, 38(2):214-218(in Chinese).
[25] BRANDON J M, NGUYEN L T. Experimental study of effects of forebody geometry on high angle of attack stability[J]. Journal of Aircraft, 1988, 25(7):591-597. M, MORTON S A, FORSYTHE J R, et al. Analysis of delta-wing vortical substructures using detached-eddy simulation [J]. AIAA Journal, 2006,
44(5):964-972.
[10] MORTON S A, STEENMAN M B, CUMMINGS R M, et al. Des resolution issues for vertical flows on a delta wing and an F-18C, AIAA-2003-1103 [R]. Reston: AIAA, 2003.
[11] GURSUL I, WANG Z, VARDAKI E. Review of flow control mechanisms of leading-edge vortices[J]. Progress in Aerospace Sciences, 2007, 43(7-8): 246-270.
[12] 孙海生. 飞机机翼摇滚低速风洞实验研究[J]. 流体力学实验与测量, 2000, 14(4): 32-35.
SUN H S. Investigation on wing rock in low speed wind tunnel for a fighter configuration[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(4): 32-35 (in Chinese).
[13] 王兵, 邓学蓥, 马宝峰, 等. 前体涡诱导机翼摇滚的人工转捩技术研究[J]. 空气动力学学报, 2010, 28(5): 525-535.
WANG B, DENG X Y, MA B F, et al. An artificial transition technique applied to wing rock induced by forebody vortex[J]. Acta Aerodynamica Sinica, 2010, 28(5): 525-535(in Chinese).
[14] 陶洋, 赵忠良, 杨海泳. 翼身组合体摇滚特性高速试验研究[J]. 实验流体力学, 2011, 25(6): 45-48.
TAO Y, ZHAO Z L, YANG H Y. Investigation on wing rock of wing-body configuration at high speed wind tunnel[J]. Journal of Experiments in Fluid Me-chanics, 2011, 25(6): 45-48(in Chinese).
[15] 荣 臻, 邓学蓥, 王 兵, 等. 前体涡诱导双极限环摇滚流动特性的实验研究[J]. 实验流体力学, 2010, 24(3): 20-24.
RONG Z, DENG X Y, WANG B, et al. Experimental investigation on flow characteristics during double limit cycle oscillation induced by forebody vortex[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 20-24(in Chinese).
[16] 韩冰, 徐敏, 李广宁, 等. 双三角翼及其翼身组合体的摇滚运动特性比较研究[J]. 航空学报, 2014, 35(2): 417-426.
HAN B, XU M, LI G N, et al. Comparative research on the dynamic rolling characteristics of double delta wing and wing-body configuration[J]. Acta Aeronau-tica Et Astronautica Sinica, 2014, 35(2): 417-426(in Chinese).
[17] 史志伟, 李鹭扬, 程克明, 等. 基于混联机构的风洞
大攻角动态实验装置: 中国, CN101929915B[P]. 2011-11-30.
SHI Z W, LI L Y, CHENG K M, et al. Wind-tunnel high attack angle dynamic testing device based on hy-brid mechanism: China, CN101929915B[P]. 2011-11-30(in Chinese).
[18] 杨小亮. 飞行器多自由度耦合摇滚运动数值模拟研究[D]. 长沙: 国防科学技术大学航天与材料工程学院, 2012.
YANG X L. Numerical investigation of aircraft rock in multiple degrees of freedom[D].Changsha: College of Aerospace and Material Engineering, National University of Defense Technology, 2012(in Chinese).
[19] TAKASHI M, SHIGERU Y, YOSHIAKI N. The effect of leading-edge profile of self-induced oscillation of 45-degree delta wings, AIAA-2000-4004[R]. Reston: AIAA, 2000.
[20] TAKASHI M, SHIGERU Y,YOSHIAKI N. Data-based modeling of non-slender wing rock, AIAA- 2003-738[R]. Reston: AIAA, 2003.
[21] 刘伟, 杨小亮, 张涵信, 等. 大攻角运动时的机翼摇滚问题研究综述[J]. 力学进展, 2008, 38(2): 214-218.
LIU W, YANG X L, ZHANG H X, et al. A review on investigations of wing rock problems under high angles of attack[J]. Advances in Mechanics, 2008, 38(2):214-218(in Chinese).
[22] BRANDON J M, NGUYEN L T. Experimental study of effects of forebody geometry on high angle of attack stability[J]. Journal of Aircraft, 1988, 25(7): 591-597.
/
〈 | 〉 |