流动控制

高超声速导弹等离子体合成射流控制数值研究

  • 杨瑞 ,
  • 罗振兵 ,
  • 夏智勋 ,
  • 王林 ,
  • 周岩
展开
  • 国防科学技术大学 航天科学与工程学院, 长沙 410073
杨瑞 男,硕士研究生。主要研究方向:流动控制技术。E-mail:hyper_shan@163.com

收稿日期: 2015-10-29

  修回日期: 2016-01-22

  网络出版日期: 2016-01-30

基金资助

国家自然科学基金(11002161,11372349);全国优秀博士学位论文作者专项资金(201058);航空科学基金(20121288002);国防科技大学杰出青年基金(2013-CT-01)

Numerical study of plasma synthetic jet control on hypersonic missile

  • YANG Rui ,
  • LUO Zhenbing ,
  • XIA Zhixun ,
  • WANG Lin ,
  • ZHOU Yan
Expand
  • College of Aerospace Science and Engineering, National University of Defense and Technology, Changsha 410073, China

Received date: 2015-10-29

  Revised date: 2016-01-22

  Online published: 2016-01-30

Supported by

National Natural Science Foundation of China (11002161,11372349);Foundation for the Author of National Excellent Doctor Dissertation of China (201058);Aeronautical Science Foundation of China (20121288002);Foundation for the Excellent Youth of NUDT (2013-CT-01)

摘要

快响应控制技术已成为高超声速飞行器发展的关键技术之一,具有极快响应、零质量特性的等离子体合成射流(PSJ)已在超声速流动控制方面初步显示出优异的控制能力,极有潜力应用于高超声速飞行器的快响应控制。基于等离子体合成射流的快响应特性,提出了高超声速飞行器等离子体合成射流快响应控制技术,并通过建立简化的高超声速导弹流场控制模型,对等离子体合成射流控制高超声速导弹进行数值研究。首先,理论分析了高超声速导弹流场的典型结构特征,导弹流场中存在3个特征流场结构。在此基础上,在导弹3个特征位置前面安装等离子体合成射流激励器,研究等离子体合成射流对高超声速流场结构的控制作用,分析由此导致的导弹表面压力分布、升阻特性以及俯仰力矩特性变化。数值仿真结果表明:等离子体合成射流对高超声速导弹外流场中膨胀波和斜激波都具有控制作用,使得波的强度均变弱,且对斜激波的控制效果更为显著;导弹流场结构及气动特性变化具有很强的射流跟随性,射流作用下的导弹流场变化响应时间非常短,仅为0.2 ms;通过合理布置等离子合成射流激励器的位置,可以使得导弹表面压力分布快速改变,从而实现高超声速导弹姿态的快速控制。

本文引用格式

杨瑞 , 罗振兵 , 夏智勋 , 王林 , 周岩 . 高超声速导弹等离子体合成射流控制数值研究[J]. 航空学报, 2016 , 37(6) : 1722 -1732 . DOI: 10.7527/S1000-6893.2016.0028

Abstract

Fast response control technology has become one of the key technologies for hypersonic vehicle development. Plasma synthetic jet (PSJ), which is with fast response and synthetic characteristics, has initially shows excellent potential in terms of hypersonic flow control. A fast response hyper-vehicle control technology based on PSJ is proposed based on PSJ's fast response property and a simplified missile flow field control model for numerical study is established. Theoretical analysis of the typical structure of hypersonic missile flow shows that there are three characteristic flow structures. The PSJ actuators is arranged to these three characteristic positions and the effect on flow structure is observed, which results in the changes of the missile surface pressure distribution, as well as the characteristics of the lift, drag and pitching moments. Numerical simulation results indicate that the jet could have a significant influence on hypersonic flows. It makes the intensity of expansion wave and shock wave weaker, and has more significant effect on shock wave. The change of the flow structure and aerodynamic characteristics has a strong jet following character. That is to say, the flow change response time is very short, which is on the order of 0.2 ms. With rational layout of the actuators' position, quick change in the surface pressure distribution can be achieved for a missile, and thus modulating the missile's attitude can be realized.

参考文献

[1] MARSHALL L A, BAHM C, CORPENING G P, et al. Overview with results and lessons learned of the X-43A Mach 10 flight:AIAA-2005-3336[R]. Reston:AIAA, 2005.
[2] 野舟. 美国X-51A飞行器第三次飞行试验失败[J]. 飞航导弹, 2012(8):87. YE Z. US X-51A aircraft third flight test failure[J]. Cruise Missile, 2012(8):87(in Chinese).
[3] STAFF W. US military loses contact with hypersonic aircraft[EB/OL]. (2011-08-12)[2015-10-17]. http://www.bbc.com/news/world-us-canada-14497641.
[4] 赵彪. 高超声速飞行器技术发展研究[D]. 哈尔滨:哈尔滨工业大学, 2010:14-29. ZHAO B. Research on the development of hypersonic vehicle technology[D]. Harbin:Harbin Institute of Technology University, 2010:14-29(in Chinese).
[5] 马丽, 杨建军, 张维刚. 高超声速飞行器发展综述[J].飞航导弹, 2012(6):22-27. MA L, YANG J J, ZHANG W G. Overview of hypersonic vehicle development[J]. Cruise Missile, 2012(6):22-27(in Chinese).
[6] 朱云骥, 史忠科. 高超声速飞行器飞行特性和控制的若干问题[J]. 飞行力学, 2005, 23(3):5-8. ZHU Y J, SHI Z K. Several problems of flight characteristics and flight control for hypersonic vehicles[J]. Flight Dynamic, 2005, 23(3):5-8(in Chinese).
[7] 程凤舟, 万自明, 陈士橹, 等. 防空导弹直接力与气动力复合控制系统设计[J]. 飞行力学, 2003, 21(2):49-52. CHENG F Z, WAN Z M, CHEN S L, et al. Side jet and aerodynamics compound control system design of air defense missiles[J]. Flight Dynamics, 2003, 21(2):49-52(in Chinese).
[8] 徐明亮, 刘鲁华, 汤国建, 等. 直接力/气动力复合作用动能拦截弹姿态控制方法[J]. 国防科技大学学报, 2010, 32(4):30-36. XU M L, LIU L H, TANG G J, et al. Research on attitude control of kinetic energy interceptor under blended operation of lateral thrust and aerodynamic force[J]. Journal of National University of Defense Technology, 2010, 32(4):30-36(in Chinese).
[9] 马克茂, 赵辉, 张德成. 导弹直接侧向力与气动力复合控制设计与实现[J]. 宇航学报, 2011, 32(2):310-316. MA K M, ZHAO H, ZHANG D C. Control design and implementation for missiles with blended lateral jets and aerodynamic control systems[J]. Journal of Astronautics, 2011, 32(2):310-316(in Chinese).
[10] 陶增元, 李军, 程邦勤. 飞机推进系统关键技术——推力矢量技术[J]. 空军工程大学学报:自然科学版, 2000, 1(2):86-90. TAO Z Y, LI J, CHENG B Q. Thrust vector technique, the vital technology of aircraft propulsion system[J]. Journal of Air Force Engineering University:Natural Science Edition, 2000, 1(2):86-90(in Chinese).
[11] 王永寿. 导弹的推力矢量控制技术[J]. 飞航导弹, 2005(1):54-60. WANG Y S. Missile thrust vector control technology[J]. Cruise Missile, 2005(1):54-60(in Chinese).
[12] 赵桂林, 彭辉, 胡亮, 等. 超音速流动中侧向喷流干扰特性的实验研究[J]. 力学学报, 2004, 36(5):577-582. ZHAO G L, PENG H, HU L, et al. Experimental investigation of lateral jet interactions in supersonic flows[J]. Acta Mechanica Sinica, 2004, 36(5):577-582(in Chinese).
[13] 蔡晋生, 刘秋洪. 超声速流场中侧向射流的数值研究[J]. 空气动力学学报, 2010, 28(5):553-558. CAI J S, LIU Q H. Numerical investigation of lateral jets in supersonic cross-flows[J]. Acta Aerodynamica Sinica, 2010, 28(5):553-558(in Chinese).
[14] 谷云庆, 赵刚, 郑金兴, 等. 射流表面主流场速度与射流速度耦合减阻特性[J]. 中南大学学报:自然科学版, 2012, 43(12):4713-4721. GU Y Q, ZHAO G, ZHENG J X, et al. Characteristics of drag reduction on coupling of jet surface main flow field velocity and j et velocity[J]. Journal of Central South University:Science and Technology, 2012, 43(12):4713-4721(in Chinese).
[15] 陈芳芳. 高超声速飞行器侧向喷流数值研究[D]. 哈尔滨:哈尔滨工业大学, 2012:20-47. CHEN F F. Numerical investigations of a transverse jet interaction with supersonic free stream[D]. Harbin:Harbin Institute of Technology University, 2012:20-47(in Chinese).
[16] 刘朋冲, 李军, 贾敏, 等. 等离子体合成射流激励器的流场特性分析[J]. 空军工程大学学报:自然科学版, 2011, 12(6):22-25. LIU P C, LI J, JIA M, et al. Investigation on flow filed of the plasma synthetic jet device[J]. Journal of Air Force Engineering University:Natural Science Edition, 2011, 12(6):22-25(in Chinese).
[17] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astonautica, 2015, 36(2):381-405(in Chinese).
[18] 罗振兵, 夏智勋, 王林, 等. 新概念等离子体高能合成射流快响应直接力技术[C]//中国力学大会——2013论文摘要集. 北京:中国力学学会, 2013. LUO Z B, XIA Z X, WANG L, et al. The new concept of high-energy plasma synthetic jet technology and fast response direct force[C]//The Chinese Congress of Theoretical and Applied Mechanics (CCTAM2013) Institute. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2013(in Chinese).
[19] ANDERSON K V, KNIGHT D D. Plasma jet for flight control[J]. AIAA Journal, 2012, 50(9):1855-1872.
[20] GROSSMAN K. Characterization of SparkJet actuators for flow control:AIAA-2004-0089[R]. Reston:AIAA, 2004.
[21] SAMIMY M, ADAMOVICH L, WEBB B, et al. Development and characterization of plasma actuators for high-speed jet control[J]. Experiment in Fluids, 2004, 37(4):577-588.
[22] NARAYANASWAMY V, RAJAL L, CLEMENS N T. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control[J]. AIAA Journal, 2010, 48(2):297-305.
[23] 王林. 等离子体高能合成射流及其超声速流动控制机理研究[D]. 长沙:国防科学技术大学, 2014:15-56. WANG L. Principle of plasma high-energy synthetic jet and supersonic flow control[D]. Changsha:National University of Defense Technology, 2014:15-56(in Chinese).
[24] JIN D, WEI C, LI Y, et al. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow[J]. Chinese Journal of Aeronautics, 2015, 28(1):66-76.
[25] WANG L, XIA Z X, LUO Z B, et al. Effect of pressure on the performance of plasma synthetic jet actuator[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(12):2309-2315.
[26] 王林, 夏智勋, 刘冰, 等. 等离子体合成射流流场特性及参数影响规律数值研究[C]//中国力学大会——2013论文摘要集. 北京:中国力学学会, 2013. WANG L, XIA Z X, LIU B, et al. Three-dimension numerical simulation on the flow characteristics of plasma synthetic jet[C]//The Chinese Congress of Theoretical and Applied Mechanics (CCTAM2013) Institute. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2013(in Chinese).
[27] 解发瑜, 李刚, 徐忠昌. 高超声速飞行器概念及发展动态[J]. 飞航导弹, 2004(5):27-31. XIE F Y, LI G, XU Z C. Hypersonic vehicle concepts and developments[J]. Cruise Missile, 2004(5):27-31(in Chinese).
[28] 瞿章华. 高超声速空气动力学[M]. 长沙:国防科技大学出版社, 1999:25-45. QU Z H. Hypersonic aerodynamics[M]. Changsha:National University of Defense Technology Press, 1999:25-45(in Chinese).

文章导航

/