流动控制

基于DES方法的高超声速激波/边界层干扰的双微楔控制数值研究

  • 董祥瑞 ,
  • 陈耀慧 ,
  • 董刚 ,
  • 刘怡昕
展开
  • 南京理工大学 瞬态物理重点实验室, 南京 210094
董祥瑞 女,博士研究生。主要研究方向:超声速流动分离及其控制。E-mail:dongxr1154@126.com;董刚 男,博士,研究员,博士生导师。主要研究方向:计算流体力学。E-mail:dgvehicle@yahoo.com;刘怡昕 男,中国工程院院士,博士生导师。主要研究方向:武器系统及运用。E-mail:liuyixi@cae.cn

收稿日期: 2015-12-11

  修回日期: 2016-01-11

  网络出版日期: 2016-01-12

基金资助

总装预研基金(9140C300206150C30143);江苏省普通高校研究生创新计划(KYZZ15_0134)

DES numerical study of shock wave/boundary layer interactions in hypersonic flows controlled by double micro-ramps

  • DONG Xiangrui ,
  • CHEN Yaohui ,
  • DONG Gang ,
  • LIU Yixin
Expand
  • National Key Laboratory of Transient Physics, Nanjing University of Science & Technology, Nanjing 210094, China

Received date: 2015-12-11

  Revised date: 2016-01-11

  Online published: 2016-01-12

Supported by

General Armament Department Pre-Research Foundation of China (9140C300206150C30143);Innovation Funding of Scientific Research of Jiangsu Province for Graduate Students of Universities (KYZZ15_0134)

摘要

高超声速飞行器在流场中通常会伴随激波/边界层干扰(SWBLI),其引发的流动分离将导致进气道性能下降。采用湍流离散涡模拟(DES)方法、结合有限体积离散方法与自适应网格加密(AMR)技术对来流马赫数为7.0的流场中SWBLI诱导的流动分离进行数值模拟,并分别采用单、双微楔对其进行控制。针对流场结构、近壁面流向速度、压力梯度及总压损失等参数,分析讨论了不同双微楔流向安装位置对SWBLI的控制效果。研究结果表明:双微楔产生的流向涡对与涡对之间的相互诱导促进了各自流向涡对之间的卷吸作用,使得双微楔对分离气泡的消除效果优于单只微楔;流动总压损失系数随着微楔后缘与分离气泡中心的距离的减小呈先减小后增加的趋势;综合讨论流向涡强度与形状阻力的影响,得到了双微楔最佳流向安装位置。

本文引用格式

董祥瑞 , 陈耀慧 , 董刚 , 刘怡昕 . 基于DES方法的高超声速激波/边界层干扰的双微楔控制数值研究[J]. 航空学报, 2016 , 37(6) : 1771 -1780 . DOI: 10.7527/S1000-6893.2016.0016

Abstract

Shock wave/boundary layer interaction (SWBLI) is a ubiquitous phenomenon encountered in hypersonic flow field, which can induce flow separation and lead to performance degradation of hypersonic inlet. Detached-eddy simulation (DES) and finite volume method have been used with the adaptive mesh refinement (AMR) technology to simulate the flow separation induced by SWBLIs in hypersonic flow at Ma=7.0, which have been respectively controlled by single and double micro-ramps. The control effects of micro-ramps with different streamwise installation positions on flow separation have been discussed based on the flow structure, near-wall streamwise velocity, pressure gradient and total pressure loss. The numerical results show that the reciprocal induction among the vortices pairs generated by these two micro-ramps shows the promoting effects on vortices entrainment generated by each micro-ramp, consequently the performance of double micro-ramps in eliminating the separation bubble is better than the single. As the distance between micro-ramp the trailing edge and the center of separation bubble decreases, the total pressure loss shows a trend of first decrease and then increase. Discussing the effects of both streamwise vortex intensity and its additional resistance synthetically, the optimal streamwise installation position of double micro-ramps is obtained.

参考文献

[1] FERRI A, ATTI D G. Experimental results with airfoils tested in the high speed tunnel at Guidonia:NACA TM 946[R]. Washington, D.C.:National Advisory Committee for Aeronautics, 1939.
[2] MACCORMACK R W. Numerical solution of the interaction of a shock wave with a laminar boundary layer[C]//Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics. Berlin:Springer Heidelberg, 1971:151-163.
[3] KNIGHT D, YAN H, PANARAS A G, et al. Advances in CFD prediction of shock wave turbulent boundary layer interactions[J]. Progress in Aerospace Sciences, 2003, 39(2-3):121-184.
[4] DONOVAN J F. Control of shock wave/turbulent boundary layer interactions using tangential injection[C]//Proceedings of the 34th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1996.
[5] 段会申, 刘沛清, 何雨薇, 等. 二维翼型微吸吹气减阻控制新技术数值研究[J]. 航空学报, 2009, 30(7):1219-1226. DUAN H S, LIU P Q, HE Y W, et al. Numerical investigation of drag-reduction control by micro-suction-blowing on airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7):1219-1226(in Chinese).
[6] GEFROH D, LOTH E, DUTTON C, et al. Aeroelastically deflecting flaps for shock/boundary-layer interaction control[J]. Journal of Fluids and Structures, 2003, 17(7):1001-1016.
[7] CARABALLO E, WEBB N, LITTLE J, et al. Supersonic inlet flow control using plasma actuators[C]//Proceedings of the 47th Aerospace Sciences Meeting. Reston:AIAA, 2009.
[8] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese).
[9] FORD C W P, BABINSKY H. Micro-ramp control for oblique shock wave/boundary layer interactions:AIAA-2007-4115[R]. Reston:AIAA, 2007.
[10] BABINSKY H, OGAWA H. SBLI control for wings and inlets[J]. Shock Waves, 2008, 18(2):89-96.
[11] ANDERSON B H, TINAPPLE J, SURBER L. Optimal control of shock wave turbulent boundary layer interactions using micro-array actuation[C]//Proceedings of the 3rd AIAA Flow Control Conference. Reston:AIAA, 2006.
[12] LEE S, LOTH E, WANG C. LES of supersonic turbulent boundary layers with[mu] VG's[C]//Proceedings of the 25th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2007.
[13] TITCHENER N, BABIBSKY H, LOTH E. The effects of various vortex generator configurations on a normal shock wave/boundary layer interaction[C]//Proceedings of the 51st Aerospace Sciences Meeting. Reston:AIAA, 2013.
[14] SHARMA P, GHOSH S. A novel vortex generator for mitigation of shock-induced separation[C]//Proceedings of the 52nd Aerospace Sciences Meeting. Reston:AIAA, 2014.
[15] YAN Y, CHEN C, LU P, et al. Study on shock wave-vortex ring interaction by the micro vortex generator controlled ramp flow with turbulent inflow[J]. Aerospace Science and Technology, 2013, 30(1):226-231.
[16] YAN Y, LIU C. Study on the ring-like vortical structure in MVG controlled supersonic ramp flow with different inflow conditions[J]. Aerospace Science and Technology, 2014, 35(1):106-115.
[17] SUN Z, SCARANO F, OUDHEUSDEN B, et al. Numerical and experimental investigation of the flow behind a supersonic micro-ramp[C]//Proceedings of the 51st Aerospace Sciences Meeting. Reston:AIAA, 2013.
[18] 张瑜, 李静美, 秦俭. 跨声速激波边界层相互作用的被动控制[J]. 力学学报, 1995, 27(5):523-535. ZHANG Y, LI J M, QIN J. Passive control of interaction between shock wave and boundary layer in transonic flow[J]. Acta Mechanica Sinica, 1995, 27(5):523-535(in Chinese).
[19] 刘刚, 刘伟, 牟斌, 等. 涡流发生器数值计算方法研究[J]. 空气动力学学报, 2007, 25(2):241-244. LIU G, LIU W, MU B, et al. CFD numerical simulation investigation of vortex generators[J]. Acta Aerodynamica Sinica, 2007, 25(2):241-244(in Chinese).
[20] 薛大文, 陈志华, 孙晓辉, 等. 微型三角楔超声速绕流特性的研究[J]. 工程力学, 2013, 30(4):455-460. XUE D W, CHEN Z H, SUN X H, et al. Investigations on the flow characteristics of supersonic flow past a micro-ramp[J]. Engineering Mechanics, 2013, 30(4):455-460(in Chinese).
[21] 薛大文, 陈志华, 孙晓辉, 等. 翼型绕流分离的微楔控制[J]. 工程力学, 2014, 31(8):217-222. XUE D W, CHEN Z H, SUN X H, et al. Micro-ramp control of the boundary separation induced by the flow past an airfoil[J]. Engineering Mechanics, 2014, 31(8):217-222(in Chinese).
[22] 褚胡冰, 陈迎春, 张彬乾, 等. 增升装置微型涡流发生器数值模拟方法研究[J]. 航空学报, 2012, 33(1):11-21. CHU H B, CHEN Y C, ZHANG B Q, et al. Investigation of numerical simulation technique for micro vortex generators applied to high fift system[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1):11-21(in Chinese).
[23] 刘学强, 伍贻兆, 程克明. 用基于M-SST模型的DES数值模拟喷流流场[J]. 力学学报, 2004, 36(4):401-406. LIU X Q, WU Y Z, CHENG K M. Computation of lateral turbulent jets using M-SST DES model[J]. Acta Mechanica Sinica, 2004, 36(4):401-406(in Chinese).
[24] CANEPA E, LENGANI D, SATTA F, et al. Boundary layer separation control on a flat plate with adverse pressure gradients using vortex generators[C]//Proceedings of ASME Turbo Expo 2006:Power for Land, Sea, and Air. New York:AMSE, 2006:1211-1220.

文章导航

/