电子与控制

基于分布式地面站天线的空间功率合成

  • 张可 ,
  • 刘增军 ,
  • 聂俊伟 ,
  • 朱祥维 ,
  • 孙广富
展开
  • 国防科学技术大学 电子科学与工程学院, 长沙 410073
孙广富 男,博士,研究员,博士生导师。主要研究方向:卫星导航定位技术。Tel:0731-84576541 E-mail:sunguangfu_nnc@163.com

收稿日期: 2015-06-12

  修回日期: 2016-01-04

  网络出版日期: 2016-01-08

基金资助

国家自然科学基金(61403413)

Spatial power combining based on distributed antennas in Earth station

  • ZHANG Ke ,
  • LIU Zengjun ,
  • NIE Junwei ,
  • ZHU Xiangwei ,
  • SUN Guangfu
Expand
  • College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2015-06-12

  Revised date: 2016-01-04

  Online published: 2016-01-08

Supported by

National Natural Science Foundation of China (61403413)

摘要

卫星导航系统(GNSS)地面站天线对卫星进行上行注入时,信号到达卫星时较弱,容易受到干扰,故地面站注入天线需同时具备平时多目标注入和干扰时单目标功率增强的能力。利用卫星导航系统中地面站之间能够实现精密时间同步的特点,提出了一种基于分布式卫星导航地面站抛物面天线的空间功率合成方法,使用相位预补偿实现分布式天线阵到达目标卫星信号的相位粗同步;分析了相位误差、辐射功率误差对空间功率合成效率的影响,得到了阵元初始相位标定精度与相对定位精度的约束关系;并对合成信号的抗干扰能力和信号质量进行了研究。理论和仿真结果表明,当相位精度因子小于0.2时,4个等辐射功率天线在10°仰角以上波束扫描范围内的功率合成效率均在75%以上,且可以通过控制初始相位标定精度与相对定位精度实现更高的合成效率;而在合成效率要求75%以上时,天线辐射功率误差对合成效率的影响基本可以忽略。采用分布式波束扫描天线能够对地面站上行注入进行功率增强,可实现注入波束和功率的灵活配置,有效解决制约机动式和小型化地面站功率提升的瓶颈问题。

本文引用格式

张可 , 刘增军 , 聂俊伟 , 朱祥维 , 孙广富 . 基于分布式地面站天线的空间功率合成[J]. 航空学报, 2016 , 37(6) : 1912 -1920 . DOI: 10.7527/S1000-6893.2016.0001

Abstract

Signal uploaded by Earth station of global navigation satellite system (GNSS) is weak when reaching satellite, and it is vulnerable to interference, then the antennas have the demand of multi-target uploading in peacetime and single target enhancing in jamming-time. A kind of spatial power combining is presented to enhance the upload signal using distributed antenna in Earth station since earth stations in GNSS are time synchronized with high precision. The upload signals at receiver on satellite are phase course synchronized with phase pre-compensation. Then the impact of phase error and power error on power combining efficiency is analyzed, so we obtain the constraint relationship between initial phase measure precision and relative positioning precision under certain efficiency. Also the quality and ant-jamming of synthesized signal in the receiver are analyzed. The theoretical and simulation results show that, when initial phase measure precision and relative positioning precision are both less than 0.2, the combining efficiency of 4 elements is more than 75% among the scan elevation range of over 10° and can be improved when the higher initial phase measure precision and relative positioning precision are available. But the transmiting power error can hardly affect the combining efficiency when efficiency larger than 75% is demanded. Distributed beam scanning antenna can enhance the power of the upload signal, so it can provide a solution to power enhancement suffered by self-propelled and miniaturized Earth station by arraying distributed antennas to achieve flexible combining and configurations of beam and power.

参考文献

[1] ELLIOTT D K, CHRISTOPHER J H. Understanding GPS:Principles and application[M]. 2nd ed. Boston:Artech House Inc., 2006:67-103.
[2] 李跃, 邱致. 导航与定位[M]. 2版. 北京:国防工业出版社, 2008:26-34. LI Y, QIU Z. Navigation and positioning[M]. 2nd ed. Beijing:National Defensee Industry Press, 2008:26-34(in Chinese).
[3] 王燕敏, 肖立民, 粟欣, 等. 分布式天线系统中的协同发送天线选择[J]. 清华大学学报:自然科学版, 2013, 53(7):951-954. WANG Y M, XIAO L M, SU X, et al. Joint transimit antenna selection in distibuted antenna system[J]. Journal of Tsinghua Universty:Science and Technology, 2013, 53(7):951-954(in Chinese).
[4] LAZIO T J W. The square kilometre array pulsar timing array[J]. Classical and Quantum Gravity, 2013, 30(22):1-14.
[5] 马仑, 李真芳, 廖桂生. 一种稳健的利用分布式小卫星获取宽域、高分辨SAR图像的方法[J]. 航空学报, 2007, 28(5):1190-1194. MA L, LI Z F, LIAO G S. Robust approach to achieve wide swath and high resolution SAR image by using distributed small satellites[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1190-1194(in Chinese).
[6] 钟顺时. 天线理论与技术[M]. 2版. 北京:电子工业出版社, 2015:80-105. ZHONG S S. Antenna theory and techniques[M]. 2nd ed. Beijing:Electronic Industry Press, 2015:80-105(in Chinese).
[7] 顾菁华, 龚文斌, 余金培. 星载DBF接收天线误差校正算法[J]. 航空学报, 2009, 30(11):2149-2155. GU J H, GONG W B, YU J P. Calibration algorithm of satellite-borne DBF receiving antenna array[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11):2149-2155(in Chinese).
[8] 章宇兵, 张浩, 廖桂生. 任意分散布阵短波通信干扰机空间功率合成技术[J]. 西安电子科技大学学报, 2006, 33(1):150-155. ZHANG Y B, ZHANG H, LIAO G S. A technology of spatial power combination for the random decentralized jammer array[J]. Journal of Xidian University, 2006, 33(1):150-155(in Chinese).
[9] 路通. 空间功率合成中天线阵列的应用研究[D]. 成都:电子科技大学, 2009:19-61. LU T. Application and study on antenna array in spatial power combination[D]. Chengdu:University of Electronic Science and Technology of China, 2009:19-61(in Chinese).
[10] 徐刚, 徐勇, 施美友, 等. 随机相位误差对空间功率合成效率的影响[J]. 强激光与粒子束, 2013, 25(11):2914-2918. XU G, XU Y, SHI M Y, et al. Impact of random phase error on microwave power combining efficiency[J]. High Power Laser and Particle Beams, 2013, 25(11):2914-2918(in Chinese).
[11] 郭劲松, 洪家财. 天线上行组阵空间功率合成性能初步分析[J]. 现代电子技术, 2015, 38(21):89-95. GUO J S, HONG J C. Preliminary analysis of spatial power synthesis performance in antenna uplink array[J]. Modern Electronics Technique, 2015, 38(21):89-95(in Chinese).
[12] 邓朝平, 侯德亭, 周东方, 等. 密集阵高功率微波空间功率合成[J]. 强激光与粒子束, 2013, 25(2):436-440. DENG C P, HOU D T, ZHOU D F, et al. Spatial power combining of close-packed antenna arrays of high power microwave[J]. High Power Laser and Particle Beams, 2013, 25(2):436-440(in Chinese).
[13] 刘亚威, 苏小保. 用于空间功率合成的新型2×2渐变鳍线阵分析与设计[J]. 电子与信息学报, 2015, 37(5):1255-1259. LIU Y W, SU X B. Analysis and design of a new 2×2 tapered finline array for spatial power combining[J]. Journal of Electronics & Information Technology, 2015, 37(5):1255-1259(in Chinese).
[14] DING J, WANG Q, ZHANG Y, et al. High-efficiency millimetre-wave spatial power combining structure[J]. Electronics Letters, 2015, 51(5):397-399.
[15] OOI B L, LEONG M S, ZHONG Z. An EBG spatial power combiner[J]. Microwave and Optiacl Technology Letters, 2008, 50(6):1534-1536.
[16] BOAVENTURA A J S, COLLADO A, GEORGIADIS A, et al. Spatial power combining of multi-sine signals for wireless power transmission applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(4):1022-1030.
[17] CHANG L, ZHANG Z J, LI Y, et al. Array of spatial power combination for wide angle sector coverage[J]. Microwave and Optiacl Technology Letters, 2014, 56(12):2990-2993.
[18] 朱祥维. 卫星导航系统时间同步关键技术研究[D]. 长沙:国防科技大学, 2007:1-10. ZHU X W. Key technology study on time synchronization in satellite navigation system[D]. Changsha:National University of Defense Technology, 2007:1-10(in Chinese).
[19] 董建明, 魏亮, 易卿武. 卫星导航测量型天线的相位中心标定[J]. 无线电工程, 2014, 44(6):47-50. DONG J M, WEI L, YI Q W. Calibrating phase center of satellite navigation surveying antenna[J]. Radio Engineering, 2014, 44(6):47-50(in Chinese).
[20] XU G C. GPS theory, algorithms and application[M]. 2nd ed. Berlin:Springer, 2007:146-160.

文章导航

/