流体力学与飞行力学

大型民机翼型变弯度气动特性分析与优化设计

  • 梁煜 ,
  • 单肖文
展开
  • 中国商用飞机有限责任公司 北京民用飞机技术研究中心, 北京 102211
梁煜,男,博士,高级工程师。主要研究方向:民机气动设计。Tel:010-57808829,E-mail:liangyu@comac.cc;单肖文,男,博士,研究员。主要研究方向:民机气动设计。Tel:010-57808989,E-mail:shanxiaowen@comac.cc

收稿日期: 2015-02-02

  修回日期: 2015-08-03

  网络出版日期: 2015-12-21

Aerodynamic analysis and optimization design for variable camber airfoil of civil transport jet

  • LIANG Yu ,
  • SHAN Xiaowen
Expand
  • Beijing Aeronautical Science and Technology Research Institute, COMAC, Beijing 102211, China

Received date: 2015-02-02

  Revised date: 2015-08-03

  Online published: 2015-12-21

摘要

为了提高飞机巡航过程中升力系数、马赫数变化后的气动效率,大型民用运输机开始采用机翼变弯度技术。以典型远程宽体客机翼型为例,研究了翼型后缘变弯度对气动性能与压力分布的影响。利用代理模型建立了不同巡航设计工况下,翼型后缘弯度与气动性能的关系。以此为基础,提出了基于代理模型的大型民机翼型变弯度设计优化方法。算例研究表明,在给定巡航升力系数与马赫数下,该方法可以预测出翼型的最佳弯度,从而改善非设计点气动性能。该方法对大型民机机翼变弯度构型设计工作有一定的工程意义。

本文引用格式

梁煜 , 单肖文 . 大型民机翼型变弯度气动特性分析与优化设计[J]. 航空学报, 2016 , 37(3) : 790 -798 . DOI: 10.7527/S1000-6893.2015.0216

Abstract

In order to improve the aerodynamic efficiency with the change of lift coefficient and Mach number, the technology of variable camber wing has been applied to civil transport jet. Taking the airfoil of long-range wide body transport jet as a case study, the effects of variable camber on airfoil's aerodynamic performance and pressure distribution are investigated. By applying surrogate model, the relationships between airfoil camber and aerodynamic performance under different design conditions are built. Furthermore, an airfoil variable camber optimization method based on surrogate model is proposed. Testing cases show that the optimization method can predict best camber at given lift coefficient and Mach number, result in aerodynamic performance improvement. The proposed method can be applied to variable wing design in civil transport jet engineering.

参考文献

[1] ANTONY J. Efficient aerodynamic shape optimization:AIAA-2004-4369[R]. Reston:AIAA, 2004.
[2] 梁煜, 程小全, 郦正能, 等. 基于代理模型的气动外形平面参数多目标匹配设计[J]. 航空学报, 2010, 31(6):1141-1148. LIANG Y, CHENG X Q, LI Z N, et al. Multi-object aerodynamic configuration parameter design using GA and Kriging[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1141-1148(in Chinese).
[3] LIANG Y, CHENG X Q, LI Z N, et al. Multi-objective robust airfoil optimization based on NURBS representation[J]. Science China:Technological Sciences, 2010, 53(10):2708-2717.
[4] LIANG Y, CHENG X Q, LI Z N, et al. Robust multi-objective wing design optimization via approximation model of CFD[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(2):286-300.
[5] HAGER J O, EYI S, LEE K D. Multi point design of transonic airfoils using optimization:AIAA-1992-4225[R].Reston:AIAA, 1992.
[6] BEATTY T D, BROOKS W B, ROBINSON L D. Investigation of a variable camber wing design:AD A045951[R]. Texas:VOUGHT CORP, 1977.
[7] RENKEN J H. Mission adaptive wing camber control systems for transport aircraft:AIAA-1985-5006[R]. Reston:AIAA, 1985.
[8] Preliminary Design Department. Assessment of variable camber for application to transport aircraft:NASA-CR-158930[R]. Washington, D.C.:NASA, 1980.
[9] BOLONKIN A, GILUARD G B. Estimated benefits of variable-geometry wing camber controal for transport aircraft:NASA/TM-1999-206586[R]. Washington, D.C.:NASA, 1999.
[10] GILYARD G B, GEORGIE J, BARNICKI J S. Flight test of an adaptive configuration optimization system for transport aircraft:NASA/TM-1999-206569[R]. Washington, D.C.:NASA, 1999.
[11] STRUBER H. The aerodynamic design of the A350 XWB-900 high lift system[C]//29th Congress of the International Council of the Aeronautical Sciences. St. Petersburg:ICAS, 2014:7-9.
[12] URNES J, NGUYEN N, IPPOLITO C, et al. A mission-adaptive variable camber flap control system to optimize high lift and cruise lift to drag ratios of future N+3 transport aircraft:AIAA-2013-0214[R]. Reston:AIAA,2013.
[13] KAUL U K, NGUYEN N T. Drag optimization study of variable camber continuous trailing edge flap(VCCTEF) using OVERFLOW:AIAA-2014-2444[R]. Reston:AIAA,2014.
[14] IPPOLITO C, NGUYEN N, TOTAH J, et al. Initial assessment of a variable-camber continuous trailing-edge flap system on a rigid wing for drag reduction in subsonic cruise:AIAA-2013-5143[R]. Reston:AIAA, 2013.
[15] RODRIGUEZ D L, AFTOSMIS M J, NEMEC M, et al. Optimized off-design performance of flexible wings with continuous trailing-edge flaps:AIAA-2015-1409[R]. Reston:AIAA, 2015.
[16] 陈秀, 葛文杰, 张永红, 等. 基于遗传算法的柔性机构形状变化综合优化研究[J]. 航空学报, 2007, 28(5):1230-1235. CHEN X, GE W J, ZHANG Y H, et al. Investigation on synthesis optimization for shape morphing compliant mechanisms using GA[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1230-1235(in Chinese).
[17] 陈钱, 白鹏, 尹维龙, 等. 可连续光滑偏转后缘的变弯度翼型气动特性分析[J]. 空气动力学学报, 2010, 28(1):46-53. CHEN Q, BAI P, YING W L, et al. Analysis on the aerodynamic characteristics of variable camber airfoils with continuous smooth morphing trailing edge[J]. Acta Aerodynamica Sinica, 2010, 28(1):46-53(in Chinese).
[18] 熊俊涛, 乔志德, 韩忠华. 基于响应面法的跨声速机翼气动优化设计[J]. 航空学报, 2006, 27(3):399-402. XIANG J T, QIAO Z D, HAN Z H. Optimum aerodynamic design of transonic wing based on response surface methodology[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(3):399-402(in Chinese).
[19] 穆雪峰, 姚卫星, 余雄庆, 等. 多学科设计优化中常用代理模型的研究[J]. 计算力学学报, 2005, 22(5):608-612. MU X F, YAO W X, YU X Q, et al. A survey of surrogate models used in MDO[J]. Chinese Journal of Computational Mechanics, 2005, 22(5):608-612(in Chinese).
[20] 王振国, 陈小前, 罗文彩, 等.飞行器多学科设计优化理论与应用研究[M]. 北京:国防工业出版社, 2006:110-158. WANG Z G, CHEN X Q, LUO W C, et al. Research on the theory and application of multidisciplinary design optimization of flight vehicles[M]. Beijing:National Defense Industry Press, 2006:110-158(in Chinese).

文章导航

/