流体力学与飞行力学

弹丸旋转空气动力效应非定常数值模拟

  • 刘周 ,
  • 谢立军 ,
  • 杨云军 ,
  • 周伟江
展开
  • 中国航天空气动力技术研究院, 北京 100074
刘周,男,硕士,高级工程师。主要研究方向:计算流体力学,飞行器气动外形设计。Tel:010-68743745 E-mail:zhou_liu@foxmail.com;谢立军,男,硕士,助理工程师。主要研究方向:计算流体力学。Tel:010-68743745 E-mail:xielijun19881001@163.com;杨云军,男,博士,研究员。主要研究方向:计算流体力学,飞行器动态特性。Tel:010-68374026 E-mail:yangyj1998@163.com

收稿日期: 2015-06-13

  修回日期: 2015-11-25

  网络出版日期: 2015-11-27

基金资助

国家自然科学基金(11372040,11472258)

Unsteady numerical simulation of aerodynamic effect of a spinning projectile

  • LIU Zhou ,
  • XIE Lijun ,
  • YANG Yunjun ,
  • ZHOU Weijiang
Expand
  • China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2015-06-13

  Revised date: 2015-11-25

  Online published: 2015-11-27

Supported by

National Natural Science Foundation of China (11372040, 11472258)

摘要

准确计算马格努斯力和力矩对旋转弹箭设计、弹道计算和稳定性研究都至关重要。采用非定常雷诺平均Navier-Stokes(RANS)方程对高速旋转的SOCBT弹丸进行了数值模拟,纵向气动特性在整个攻角范围内都较好地与试验值保持一致,而侧向气动特性马格努斯力和力矩在小攻角范围与试验数据吻合较好,在大攻角范围却存在一定的差异。采用延迟分离涡模拟(DDES)方法的计算结果有较为明显的改善,对比研究表明分离点位置对马格努斯效应有着显著影响。表明DDES方法对于提高旋转弹箭马格努斯效应的数值模拟精度有较大的潜力。

本文引用格式

刘周 , 谢立军 , 杨云军 , 周伟江 . 弹丸旋转空气动力效应非定常数值模拟[J]. 航空学报, 2016 , 37(5) : 1401 -1410 . DOI: 10.7527/S1000-6893.2015.0306

Abstract

The accurate calculation of Magnus force and moment is essential to the design, trajectory calculations and stability analysis of rotation missiles. The unsteady Reynolds averaged Navier-Stokes (RANS) method is taken to simulate the flow over the high-speed spinning projectile SOCBT. The longitudinal aerodynamic characteristics over the entire range of angles of attack are consistent with the experimental data, while the lateral aerodynamic characteristics, including Magnus force and moment, in a small angle of attack range are in good agreement with the experimental data, but the deviation is evident in the range of high angles of attack. The adoption of the delay detached eddy simulation (DDES) method has a significant improvement in the range of high angles of attack, and comparative studies have shown that the separation point has a significant influence on Magnus effect. The results show that the DDES method has great potential for improving the simulation accuracy of Magnus effect of the spinning missiles.

参考文献

[1] NIETUBICZ C J, STUREK W B, HEAVEY K R. Computations of projectile Magnus effect at transonic velocities:AIAA-1983-0224[R]. Reston:AIAA, 1983.
[2] STUREK W B, SCHIFF L B. Computations of the Magnus effect for slender bodies in supersonic flow:AIAA-1980-1586[R]. Reston:AIAA, 1980.
[3] BHAGWANDIN V A. Numerical prediction of roll damping and Magnus dynamic derivatives for finned projectiles at angle of attack:AIAA-2012-2905[R]. Reston:AIAA, 2012.
[4] JENKE L M. Experimental roll-damping, Magnus, and static-stability characteristics of two slender missile configurations at high angles of attack (0-90 deg) and Mach numbers 0.2 through 2.5:AEDC-TR-76-58[R]. Manchester Tennessee:Arnold Engineering and Development Center, 1976.
[5] DESPIRITO J. CFD prediction of M910 projectile aerodynamics:Unsteady wake effect on Magnus moment:AIAA-2007-6580[R]. Reston:AIAA, 2007.
[6] DESPIRITO J. CFD prediction of Magnus effect in subsonic to supersonic flight:AIAA-2008-0427[R]. Reston:AIAA, 2008.
[7] DESPIRITO J. Lateral jet interaction on a finned projectile in supersonic flow:AIAA-2012-0413[R]. Reston:AIAA, 2012.
[8] 雷娟棉, 李田田, 黄灿. 高速旋转弹丸马格努斯效应数值研究[J]. 兵工学报, 2013, 34(6):718-725. LEI J M, LI T T, HUANG C. A numerical investigation of Magnus effect for high-speed spinning projectile[J]. Acta Armamentarii, 2013, 34(6):718-725(in Chinese).
[9] 薛帮猛, 杨永. 旋转弹丸马格努斯力数值计算[J]. 弹箭与制导学报, 2005, 25(2):85-87. XUE B M, YANG Y. Numerical calculation of Magnus force acting on spinning projectile[J]. Journal of Projectiles Rockets Missiles and Guidance, 2005, 25(2):85-87(in Chinese).
[10] 高旭东, 武晓松, 王晓鸣. 双时间法在弹丸非定常流场模拟中的应用[J]. 弹箭与制导学报, 2004, 24(4):157-160. GAO X D, WU X S, WANG X M. Numerical simulation of unsteady flowfield over projectile by dual-time stepping method[J]. Journal of Projectiles Rockets Missiles and Guidance, 2004, 24(4):157-160(in Chinese).
[11] XIAO Z X, LIU J, LUO K Y, et al. Numerical investigation of massively separated flows past rudimentary landing gear using advanced DES approaches[J]. AIAA Journal, 2013, 51(1):107-125.
[12] KRISHNAN V, SQUIRES K D, FORSYTHE J R. Prediction of the flow around a circular cylinder at high reynolds number:AIAA-2006-0901[R]. Reston:AIAA, 2006.
[13] VATSA V N, LOCKARD D P. Assessment of hybrid RANS/LES turbulence models for aeroacoustics applications:AIAA-2010-4001[R]. Reston:AIAA, 2010.
[14] KRIST S L, BIEDRON R T, RUMSEY C L. CFL3D user's manual (Version 5.0):NASA TM-1998-208444[R]. Washington, D.C.:NASA, 1998.
[15] SHAROV D, NAKAHASHI K. Reordering of 3-D hybrid unstructured grids for vectorized LU-SGS Navier-Stokes computations:AIAA-1997-2102[R]. Reston:AIAA,1997.
[16] ROE P. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1997, 135(2):250-258.
[17] SPALART P R. Trends in turbulence treatments:AIAA-2000-2306[R]. Reston:AIAA, 2000.
[18] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[19] 刘周, 杨云军, 周伟江, 等. 基于混合方法的翼型大迎角非定常分离流动研究[J].航空学报, 2014, 35(2):372-380. LIU Z, YANG Y J, ZHOU W J, et al. Study of unsteady separation flow around airfoil at high angle of attack using hybrid RANS-LES method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):372-380(in Chinese).
[20] PECHIER M, GUILLEN P. A combined theoretical-experimental investigation of Magnus effects:AIAA-1998-2797[R]. Reston:AIAA, 1998.

文章导航

/