弹丸旋转空气动力效应非定常数值模拟
收稿日期: 2015-06-13
修回日期: 2015-11-25
网络出版日期: 2015-11-27
基金资助
国家自然科学基金(11372040,11472258)
Unsteady numerical simulation of aerodynamic effect of a spinning projectile
Received date: 2015-06-13
Revised date: 2015-11-25
Online published: 2015-11-27
Supported by
National Natural Science Foundation of China (11372040, 11472258)
刘周 , 谢立军 , 杨云军 , 周伟江 . 弹丸旋转空气动力效应非定常数值模拟[J]. 航空学报, 2016 , 37(5) : 1401 -1410 . DOI: 10.7527/S1000-6893.2015.0306
The accurate calculation of Magnus force and moment is essential to the design, trajectory calculations and stability analysis of rotation missiles. The unsteady Reynolds averaged Navier-Stokes (RANS) method is taken to simulate the flow over the high-speed spinning projectile SOCBT. The longitudinal aerodynamic characteristics over the entire range of angles of attack are consistent with the experimental data, while the lateral aerodynamic characteristics, including Magnus force and moment, in a small angle of attack range are in good agreement with the experimental data, but the deviation is evident in the range of high angles of attack. The adoption of the delay detached eddy simulation (DDES) method has a significant improvement in the range of high angles of attack, and comparative studies have shown that the separation point has a significant influence on Magnus effect. The results show that the DDES method has great potential for improving the simulation accuracy of Magnus effect of the spinning missiles.
Key words: spinning; projectile; Magnus effect; delay detached eddy simulation; SOCBT
[1] NIETUBICZ C J, STUREK W B, HEAVEY K R. Computations of projectile Magnus effect at transonic velocities:AIAA-1983-0224[R]. Reston:AIAA, 1983.
[2] STUREK W B, SCHIFF L B. Computations of the Magnus effect for slender bodies in supersonic flow:AIAA-1980-1586[R]. Reston:AIAA, 1980.
[3] BHAGWANDIN V A. Numerical prediction of roll damping and Magnus dynamic derivatives for finned projectiles at angle of attack:AIAA-2012-2905[R]. Reston:AIAA, 2012.
[4] JENKE L M. Experimental roll-damping, Magnus, and static-stability characteristics of two slender missile configurations at high angles of attack (0-90 deg) and Mach numbers 0.2 through 2.5:AEDC-TR-76-58[R]. Manchester Tennessee:Arnold Engineering and Development Center, 1976.
[5] DESPIRITO J. CFD prediction of M910 projectile aerodynamics:Unsteady wake effect on Magnus moment:AIAA-2007-6580[R]. Reston:AIAA, 2007.
[6] DESPIRITO J. CFD prediction of Magnus effect in subsonic to supersonic flight:AIAA-2008-0427[R]. Reston:AIAA, 2008.
[7] DESPIRITO J. Lateral jet interaction on a finned projectile in supersonic flow:AIAA-2012-0413[R]. Reston:AIAA, 2012.
[8] 雷娟棉, 李田田, 黄灿. 高速旋转弹丸马格努斯效应数值研究[J]. 兵工学报, 2013, 34(6):718-725. LEI J M, LI T T, HUANG C. A numerical investigation of Magnus effect for high-speed spinning projectile[J]. Acta Armamentarii, 2013, 34(6):718-725(in Chinese).
[9] 薛帮猛, 杨永. 旋转弹丸马格努斯力数值计算[J]. 弹箭与制导学报, 2005, 25(2):85-87. XUE B M, YANG Y. Numerical calculation of Magnus force acting on spinning projectile[J]. Journal of Projectiles Rockets Missiles and Guidance, 2005, 25(2):85-87(in Chinese).
[10] 高旭东, 武晓松, 王晓鸣. 双时间法在弹丸非定常流场模拟中的应用[J]. 弹箭与制导学报, 2004, 24(4):157-160. GAO X D, WU X S, WANG X M. Numerical simulation of unsteady flowfield over projectile by dual-time stepping method[J]. Journal of Projectiles Rockets Missiles and Guidance, 2004, 24(4):157-160(in Chinese).
[11] XIAO Z X, LIU J, LUO K Y, et al. Numerical investigation of massively separated flows past rudimentary landing gear using advanced DES approaches[J]. AIAA Journal, 2013, 51(1):107-125.
[12] KRISHNAN V, SQUIRES K D, FORSYTHE J R. Prediction of the flow around a circular cylinder at high reynolds number:AIAA-2006-0901[R]. Reston:AIAA, 2006.
[13] VATSA V N, LOCKARD D P. Assessment of hybrid RANS/LES turbulence models for aeroacoustics applications:AIAA-2010-4001[R]. Reston:AIAA, 2010.
[14] KRIST S L, BIEDRON R T, RUMSEY C L. CFL3D user's manual (Version 5.0):NASA TM-1998-208444[R]. Washington, D.C.:NASA, 1998.
[15] SHAROV D, NAKAHASHI K. Reordering of 3-D hybrid unstructured grids for vectorized LU-SGS Navier-Stokes computations:AIAA-1997-2102[R]. Reston:AIAA,1997.
[16] ROE P. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1997, 135(2):250-258.
[17] SPALART P R. Trends in turbulence treatments:AIAA-2000-2306[R]. Reston:AIAA, 2000.
[18] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[19] 刘周, 杨云军, 周伟江, 等. 基于混合方法的翼型大迎角非定常分离流动研究[J].航空学报, 2014, 35(2):372-380. LIU Z, YANG Y J, ZHOU W J, et al. Study of unsteady separation flow around airfoil at high angle of attack using hybrid RANS-LES method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):372-380(in Chinese).
[20] PECHIER M, GUILLEN P. A combined theoretical-experimental investigation of Magnus effects:AIAA-1998-2797[R]. Reston:AIAA, 1998.
/
〈 | 〉 |