电子与控制

大型繁忙机场场面离场交通流拥堵特征分析

  • 杨磊 ,
  • 胡明华 ,
  • 尹苏皖 ,
  • 张洪海
展开
  • 南京航空航天大学 民航学院, 南京 211106
杨磊 男,博士研究生。主要研究方向:飞行流理论与智能管控技术。Tel:025-52112669 E-mail:laneyoung49@hotmail.com;尹苏皖 女,硕士研究生。主要研究方向:机场终端区容量评估。Tel:025-52112669 E-mail:739688191@qq.com;张洪海 男,博士,副教授,硕士生导师。主要研究方向:飞行流理论与调控技术、空管协同化与智能化以及复杂空中交通系统。Tel:025-52112669 E-mail:zhh0913@163.com

收稿日期: 2015-06-19

  修回日期: 2015-10-18

  网络出版日期: 2015-10-21

基金资助

国家自然科学基金(61104159);江苏省自然科学基金(BK20131366)

Characteristics analysis of departure traffic flow congestion in mega-airport surface

  • YANG Lei ,
  • HU Minghua ,
  • YIN Suwan ,
  • ZHANG Honghai
Expand
  • College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Received date: 2015-06-19

  Revised date: 2015-10-18

  Online published: 2015-10-21

Supported by

National Natural Science Foundation of China (61104159);Natural Science Foundation of Jiangsu Province (BK20131366)

摘要

阐明机场场面交通流时空演变规律,揭示离场交通流拥堵机理是科学制定场面交通流管控策略的重要基础。采用元胞传输机理论,建立线性滑行道元胞、机坪发散/交叉元胞、汇聚元胞的交通流传输模型,并基于NetLogo系统动力学仿真平台,以广州白云国际机场为例验证了模型的有效性,进而推演分析了离场交通流基础相变特征及其影响机理。研究表明,场面离场交通流存在自由态、亚稳态、拥堵累积态和拥堵死锁态4种基础相态,指出调节与进场率相协调的推出率是有效控制离场交通流密度,缓解场面拥堵的重要手段。研究结果可为大型繁忙机场场面交通智能管控提供一定的理论基础和决策参考。

本文引用格式

杨磊 , 胡明华 , 尹苏皖 , 张洪海 . 大型繁忙机场场面离场交通流拥堵特征分析[J]. 航空学报, 2016 , 37(6) : 1921 -1930 . DOI: 10.7527/S1000-6893.2015.0280

Abstract

Expounding traffic flow spatial-temporal evolution laws on mega-airport surface and revealing departure traffic flow congestion mechanism are the significant basis of airport surface traffic flow management and control. By adopting cell transmission model, normal taxiway cells, apron cells and convergent cells operation model were established. Based on the NetLogo's system dynamics simulation platform, Guangzhou Baiyun International Airport surface operation was macroscopically simulated. By comparing the actual and simulation data, the proposed model was validated to be accurate and efficient. Simulation results show that departure traffic flow contains four basic phases:free, semi-stable, congestion accumulating and break-down, and adjusting pushback rate according to the arrival rate will be a critical method in controlling departure demand and alleviate traffic congestion. This research achievement may provide a theoretical basis and decision reference for intelligent traffic control in mega-airport.

参考文献

[1] LORDAN O, SALLAN J M, SIMO P, et al. Robustness of the air tranport network[J]. Transportation Research Part E:Logistics & Transportation Review, 2014, 68(68):155-163.
[2] TANDALE M D, SENGUPTA P, MENON P K, et al. Queuing network models of the national airspace system[C]//The 26th Congress of International Council of the Aeronautical Sciences. Reston:AIAA, 2008:1-14.
[3] HANSEN M. Micro-level analysis of airport delay externalities using deterministic queuing models:A case study[J]. Journal of Air Transport Management, 2002, 8(2):73-87.
[4] BALAKRISHNAN H, JUNG Y. A framework for coordinated surface operation planning at dallas-fort worth international airport[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston:AIAA,2007:230-243.
[5] KIVESTU P A. Alternative methods of investigating the time dependent M/G/k queue[D]. Massachusetts:Massachusetts Institute of Technology, 1976.
[6] MALONE K M. Dynamic queueing systems:Behavior and approximations for individual queues and for networks[D]. Massachusetts:Massachusetts Institute of Technology, 1995.
[7] PYRGIOTIS N, MALONE K M, ODONI A. Modelling delay propagation within an airport network[J]. Transportation Research Part C:Emerging Technologies, 2011, 27(2):60-75.
[8] IDRIS H R, DELCAIRE B, ANAGNOSTAKIS I, et al. Identification of flow constraint and control points in departure operations at airport systems[C]//AIAA Guidance, Navigation and Control Conference. Reston:AIAA,1998:947-956.
[9] SHUMSKY R A. Dynamic statistical models for the prediction of aircraft take-off times[D]. Massachusetts:Massachusetts Institute of Technology, 1995.
[10] IDRIS H, CLARKE J P, BHUVA R, et al. Queuing model for taxi-out time estimation[J]. Air Traffic Control Quarterly, 2002, 10(1):1-22.
[11] WIELAND F. The detailed policy assessment tool (DPAT)[C]//Proceedings of Spring INFORMS Conference, 1997:654-664.
[12] LONG D, LEE D, JOHNSON J, et al. Modeling air traffic management technologies with a queuing network model of the national airspace system:NAS 1.26:208988[R]. Alexandria:NASA Center for AeroSpace Information, 1999.
[13] ODONI A R, BOWMAN J, DELAHAYE D. Existing and required modeling capabilities for evaluating ATM systems and concepts:NAS 1.26:204978[R]. Alexandria:ATM Systems Strategic Traffic Management Plan and control Air Transportation, 1997.
[14] DAGANZO C F. The cell transmission model, Part II:Network traffic[J]. Transportation Research Part B, 1995, 29(2):79-93.
[15] ZHANG H H, XU Y, YANG L, et al. Macroscopic model and simulation analysis of air traffic flow in airport terminal area[J]. Discrete Dynamics in Nature and Society, 2014(6):1-15.
[16] 张洪海, 杨磊, 别翌荟, 等. 终端区进场交通流广义跟驰行为与复杂相变分析[J]. 航空学报, 2015, 36(3):949-961. ZHANG H H, YANG L, BIE Y H, et al. Research on generalized following behavior and complex phase-transition law of approaching traffic flow in terminal airspace[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):949-961(in Chinese).
[17] 戴文雯, 别翌荟, 张洪海, 等. 基于NetLogo的终端区交通流仿真[J]. 航空计算技术, 2014, 44(1):30-33. DAI W W, BIE Y H, ZHANG H H, et al. Simulation of air traffic flow based on NetLogo[J]. Aeronautical Computing Technique, 2014, 44(1):30-33(in Chinese).
[18] RAMANUJAM V, BALAKRISHNAN H. Estimation of arrival-departure capacity tradeoffs in multi-airport system[C]//The 48th IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2009:2534-2540.
[19] LIGHTHILL M J, WHITHAM G B. On kinematic waves. II. A theory of traffic flow on long crowded roads[J]. Highway Research Board Special Report, 1964, 299(1178):281-345.
[20] BELLOMO N, COSCIA V, DELITALA M. On the mathematical theory of vehicular traffic flow:Fluid dynamic and kinetic modelling[J]. Mathematical Models and Methods in Applied Science, 2002, 12(12):1801-1843.

文章导航

/