层合板干涉螺接分层损伤及其临界干涉量
收稿日期: 2015-07-16
修回日期: 2015-08-28
网络出版日期: 2015-09-02
基金资助
国家自然科学基金(51275410,51305349)
Delamination damage and critical interference percentage for interference fit bolt joint of laminates
Received date: 2015-07-16
Revised date: 2015-08-28
Online published: 2015-09-02
Supported by
National Natural Science Foundation of China (51275410, 51305349)
复合材料层合板的干涉配合连接具有优越的性能,是飞机复合材料结构连接的发展趋势。然而,层合板在干涉连接过程中易出现分层损伤。针对以上问题,采用理论建模与有限元模拟方法研究了碳纤维增强树脂基复合材料(CFRP)层合板干涉螺接过程中的分层损伤及其临界干涉量。首先,对CFRP层合板的干涉螺接工艺过程和分层损伤进行力学行为分析;然后,基于虚功原理,建立了各层界面的分层损伤临界轴向力计算模型,结合插钉力与干涉量间的关系,建立临界干涉量的预测模型,求得分层损伤的临界干涉量;最后,采用ABAQUS有限元软件对CFRP层合板干涉螺接过程进行数值模拟,应用内聚力单元建立层合板层间界面,模拟了CFRP层合板在不同干涉量时的分层损伤机理,并通过扫描电子显微镜(SEM)实验观测了细观分层损伤。研究结果显示:干涉量是影响CFRP层合板分层损伤的主要工艺参数;层合板中越靠下边的层间界面,其不产生分层损伤的临界轴向力和临界干涉量越小,即越容易产生分层损伤。
宋丹龙 , 张开富 , 钟衡 , 李原 . 层合板干涉螺接分层损伤及其临界干涉量[J]. 航空学报, 2016 , 37(5) : 1677 -1688 . DOI: 10.7527/S1000-6893.2015.0242
The interference fit joint of composite laminates boasts high performance, which is the development trend of composite structures in aircraft. However, delamination damage is easy to occur during the interference fit process. So the delamination damage and critical interference percentage are investigated during the interference fit process of carbon fiber reinforced plastics (CFRP) laminates by theoretical modeling and finite element method. Firstly, the mechanical behavior of interference fit bolt joint process and delamination damage are analyzed. Secondly, the critical thrust force without delamination damage of each interlaminar interface is modeled based on the virtual work principle, and then the critical interference percentage is predicted depending on the relation of inserting force and interference value. Finally, the interference fit bolt joint process of CFRP laminates is simulated by ABAQUS platform, and cohesive elements are applied in the interlaminar interface to simulating delamination damage mechanism of various interference percentages. In addition, microscopic delamination damage is evaluated by scanning electron microscope (SEM) in experiments. It is observed that the interference percentage is the principal parameter inducing delamination damage of CFRP laminates. The critical thrust force and critical interference percentage without delamination damage of CFRP laminates decrease with the interlaminar interface moving downward, which indicates that the closer to the bottom of CFRP laminates, the easier to be delamination.
Key words: CFRP; interference fit; delamination; FEA; cohesive element; critical interference percentage
[1] CAO Z Q, CARDEW-HALL M. Interference-fit riveting technique in fiber composite laminates[J]. Aerospace Science and Technology, 2006, 10(4):327-330.
[2] 魏景超, 矫桂琼, 闫照明, 等. 单面螺纹抽钉干涉配合复合材料连接件挤压强度研究[J]. 航空学报, 2013, 34(7):1627-1635. WEI J C, JIAO G Q, YAN Z M, et al. Bearing strength of composite joints interference-fitted with blind bolts[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1627-1635(in Chinese).
[3] 姜杰凤, 董辉跃, 柯映林. 高锁螺栓干涉连接中极限干涉量[J]. 机械工程学报, 2013, 49(3):145-152. JIANG J F, DONG H Y, KE Y L. Maximum interference fit size of hi-lock bolted joints[J]. Journal of Mechanical Engineering, 2013, 49(3):145-152(in Chinese).
[4] PRADHAN B, RAMESH BABU P. Assessment of beneficial effects of interference-fit in pin-loaded FRP composites[J]. Journal of Reinforced Plastics and Composites, 2007, 26(8):771-788.
[5] SONG D L, LI Y, ZHANG K F, et al. Stress distribution modeling for interference-fit area of each individual layer around composite laminates joint[J]. Composites Part B:Engineering, 2015, 78:469-479.
[6] 刘萍, 张开达. 干涉对复合材料叠层板螺栓连接疲劳强度的影响[J]. 航空学报, 1991, 12(12):545-549. LIU P, ZHANG K D. An experimental study on fatigue life of interference-fit composite joint[J]. Acta Aeronautica et Astronautica Sinica, 1991, 12(12):545-549(in Chinese).
[7] 宋丹龙, 李原, 骆彬, 等. CFRP/Al复合构件无头铆钉压铆力建模与仿真分析[J]. 西北工业大学学报, 2012, 30(4):558-564. SONG D L, LI Y, LUO B, et al. An effective mathematical modeling for and simulation analysis of flush rivet pressing force of CFRP/Al components[J]. Journal of Northwestern Polytechnical University, 2012, 30(4):558-564(in Chinese).
[8] RIBEIRO M L, TITA V, VANDEPITTE D. A new damage model for composite laminates[J]. Composite Structures, 2012, 94(2):635-642.
[9] HOCHENG H, DHARAN C K H. Delamination during drilling in composite laminates[J]. Journal of Engineering for Industry, 1990, 112(3):236-239.
[10] TSAO C C, CHEN W C. Prediction of the location of delamination in the drilling of composite laminates[J]. Journal of Materials Processing Technology, 1997, 70(1-3):185-189.
[11] LACHAUD F, PIQUET R, COLLOMBET F, et al. Drilling of composite structures[J]. Composite Structures, 2001, 52(3-4):511-516.
[12] TSAO C C, HOCHENG H. The effect of chisel length and associated pilot hole on delamination when drilling composite materials[J]. International Journal of Machine Tools and Manufacture, 2003, 43(11):1087-1092.
[13] TSAO C C. Effect of induced bending moment (IBM) on critical thrust force for delamination in step drilling of composites[J]. International Journal of Machine Tools and Manufacture, 2012, 59:1-5.
[14] QI Z C, ZHANG K F, LI Y, et al. Critical thrust force predicting modeling for delamination-free drilling of metal-FRP stacks[J]. Composite Structures, 2014, 107:604-609.
[15] CAMANHO P P, MATTHEWS F L. Delamination onset prediction in mechanically fastened joints in composite laminates[J]. Journal of Composite Materials, 1999, 33(10):906-927.
[16] ATAS A, MOHAMED G F, SOUTIS C. Modelling delamination onset and growth in pin loaded composite laminates[J]. Composites Science and Technology, 2012, 72(10):1096-1101.
[17] 李彪, 李亚智, 胡博海. 一种层压复合材料组合界面单元及有限元模型[J]. 航空学报, 2013, 34(6):1370-1378. LI B, LI Y Z, HU B H. A new interfacial element and finite element model for composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1370-1378(in Chinese).
[18] 孟令兵. 层压复合材料分层扩展分析的虚拟裂纹闭合技术及其应用[D]. 南京:南京航空航天大学, 2009. MENG L B. Virtual crack closure technique for delamination growth analysis of laminated composites and its application[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009(in Chinese).
[19] 周正干, 孙广开, 陈秀成, 等. 复合材料紧固孔分层激光超声量化表征试验[J]. 航空学报, 2014, 35(8):2348-2354. ZHOU Z G, SUN G K, CHEN X C, et al. Quantitative characterization test of fastening hole delamination in composites with laser ultrasonics[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2348-2354(in Chinese).
[20] WANG Z, ZHOU S, ZHANG J, et al. Progressive failure analysis of bolted single-lap composite joint based on extended finite element method[J]. Materials and Design, 2012, 37:582-588.
[21] 刘建明, 万小朋, 赵美英. 层合板螺栓连接结构疲劳寿命预测[J]. 航空学报, 2015, 36(6):1867-1875. LIU J M, WAN X P, ZHAO M Y. Fatigue life prediction of laminated bolted joint structures[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1867-1875(in Chinese).
[22] HOCHENG H, TSAO C C. Comprehensive analysis of delamination in drilling of composite materials with various drill bits[J]. Journal of Materials Processing Technology, 2003, 140(1-3):335-339.
[23] 李顺林, 王兴业. 复合材料结构设计基础[M]. 武汉:武汉理工大学出版社, 1993:62-63. LI S L, WANG X Y. Basis of composite structural design[M]. Wuhan:Wuhan University of Technology Press, 1993:62-63(in Chinese).
[24] 段元欣, 钟衡, 张开富, 等. 复合材料螺栓干涉连接结构压钉过程轴向力建模[J]. 机械科学与技术, 2015, 34(8):1302-1307. DUAN Y X, ZHONG H, ZHANG K F, et al. An analytical model for predicting the axial force on bolt insertion process of composite interference-fit joint[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(8):1302-1307(in Chinese).
[25] NIU M C Y. Composite airframe structures-practical design information and data[M]. 3rd ed. Hong Kong:Hong Kong Conmilit Press, 2010:232-244.
[26] SONG D L, LI Y, ZHANG K F, et al. Micromechanical analysis for microscopic damage initiation in fiber/epoxy composite during interference-fit pin installation[J]. Materials and Design, 2016, 89:36-49.
/
〈 | 〉 |