流体力学与飞行力学

内混式空气助力喷嘴喷雾水滴尺寸分布建模

  • 唐虎 ,
  • 常士楠 ,
  • 成竹 ,
  • 冷梦尧
展开
  • 1. 北京航空航天大学 航空科学与工程学院, 北京 100083;
    2. 中国飞机强度研究所, 西安 710065
唐虎,男,博士研究生,工程师。主要研究方向:飞机结冰环境模拟技术。Tel:029-88267587 E-mail:tanghu@buaa.edu.cn;常士楠,女,博士,教授,博士生导师。主要研究方向:飞机结冰和防/除冰技术。Tel:010-82338008 E-mail:sn_chang@buaa.edu.cn

收稿日期: 2015-06-16

  修回日期: 2015-07-21

  网络出版日期: 2015-07-21

基金资助

国家自然科学基金(11372026);中国航空工业集团公司技术创新基金(2013F62302)

Modeling droplet size distribution of spray for an internal-mixing air-assisted nozzle

  • TANG Hu ,
  • CHANG Shinan ,
  • CHENG Zhu ,
  • LENG Mengyao
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    2. Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2015-06-16

  Revised date: 2015-07-21

  Online published: 2015-07-21

Supported by

National Natural Science Foundation of China (11372026);Technique Innovation Foundation of Aviation Industry of China (2013F62302)

摘要

获取喷嘴出口喷雾的水滴尺寸分布(DSD)和水滴平均直径(MVD)对地面结冰实验设施云雾参数计算与调试至关重要。采用相位多普勒干涉仪对内混式空气助力喷嘴开展了喷雾实验研究;采用最小二乘法确定了DSD经验函数参数,建立了喷嘴出口喷雾的DSD模型,探究了喷嘴动力参数(NDPs)对DSD的影响;校验了Wigg MVD估算公式及其修正形式,分析其在具体工程应用中的局限性,提出了基于NDPs的MVD估算公式。研究发现:修正Rosin-Rammler分布函数与实验数据更为吻合,可作为描述喷嘴出口喷雾DSD的模型;NDPs对DSD有明显影响,且气压的影响更为显著;基于NDPs的MVD估算公式能提供精度可接受的MVD预估值,且比Wigg MVD估算公式及其修正形式更易于工程应用。

本文引用格式

唐虎 , 常士楠 , 成竹 , 冷梦尧 . 内混式空气助力喷嘴喷雾水滴尺寸分布建模[J]. 航空学报, 2016 , 37(5) : 1473 -1483 . DOI: 10.7527/S1000-6893.2015.0202

Abstract

Obtaining the droplet size distribution (DSD) and median volume diameter (MVD) is of key importance for the parameters prediction and calibration of simulated icing cloud in ground-based icing test facilities. The investigation involves the experimental measurement of spray generated by an internal-mixing air-assisted nozzle based on phase Doppler interferometer, the model establishment of DSD near the orifice of nozzle using the least square technique, the influence of nozzle dynamic parameters (NDPs) on DSD through varying the NDPs, and the establishment of a formula that express the relationship between NDPs and MVD. It is found that the modified Rosin-Rammler distribution function can better approximate the experimental data, therefore it could be modeled to describe the DSD of spray produced by tested nozzle. The NDPs have a significant influence on spray performance; however, the air pressure has a dominative effect on the droplet size of spray when holding equal increment on air and water pressure. The NDPs-based MVD prediction formula can provide acceptable prediction of MVD, and is more convenient in engineering application than Wigg MVD empirical formula and its modified formula.

参考文献

[1] TSAO J C, ANDERSON D N. Additional study of water droplet median volume diameter (MVD) effects on ice shapes:AIAA-2004-0413[R]. Reston:AIAA, 2004.
[2] KOLLÁR L E, FARZANEH M. Modeling the evolution of droplet size distribution in two-phase[J]. International Journal of Multiphase Flow, 2007, 33(11):1255-1270.
[3] 朱程香, 孙志国, 付斌, 等. 水滴多尺度分布对水滴撞击特性和结冰增长的影响[J]. 南京航空航天大学学报, 2010, 42(5):620-624. ZHU C X, SUN Z G, FU B, et al. Effect of multi-dispersed droplet distribution on droplet impingement and ice accretion[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(5):620-624(in Chinese).
[4] IRVINE T B, OLDENBURG J R, SHELDON D W. New icing cloud simulation system at NASA glen research center lcing research tunnel:AIAA-1998-0143[R]. Reston:AIAA, 1998.
[5] AL-KHALIL K, SALAMONT L, TENISON G. Development of the COX icing research facility:AIAA-1998-0097[R]. Reston:AIAA, 1998.
[6] LEONE G, VECCHIONE L, DE MATTEIS P, et al. The new CIRA icing wind tunnel spray bar system development:AIAA-2000-0629[R]. Reston:AIAA, 2000.
[7] GRIFFIN T A, DICKI D J, LIZANICH P J. PSL icing facility upgrade overview:AIAA-2014-2896[R]. Reston:AIAA, 2014.
[8] JACKIE D B. Icing at the Mckinley Climatic Laboratory:AIAA-2005-695[R]. Reston:AIAA, 2005.
[9] VAN ZANTE J F, IDE R F, STEEN L E, et al. NASA Glenn Icing Research Tunnel:2014 cloud calibration procedure and results:NASA/TM-2014-218392[R]. Washington, D.C.:NASA, 2014.
[10] BABINSKY E, SOJKA P E. Modeling drop size distribution[J]. Progress in Energy and Combustion Science, 2002, 28(4):303-329.
[11] SELLENS R W, BRZUSTOWSKI T A. A prediction of the drop size distribution in a spray from first principles[J]. Atomisation Spray Technology, 1985, 1(2):89-102.
[12] LI X, TANKIN R S. Droplet size distribution:A derivation of a Nukiyama-Tanasawa type distribution function[J]. Combustion Science Technology, 1987, 56(1):65-76.
[13] SIVATHANU Y R, GORE J P. A discrete probability function method for the equation of radiative transfer[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1993, 49(3):269-280.
[14] SOVANI S D, SOJKA P E, SIVATHANU Y R. Prediction of drop size distributions from first principles:The influence of fluctuations in relative velocity and liquid physical properties[J]. Atomization and Sprays, 1999, 9(2):113-152.
[15] SOVANI S D, SOJKA P E, SIVATHANU Y R. Prediction of drop size distributions from first principles:Joint-PDF effects[J]. Atomization and Sprays, 2000, 10(6):587-602.
[16] BULZAN D L, LEVY Y, AGGARWAL S K, et al. Measurements and predictions of a liquid spray from an air-assist nozzle:AIAA-1991-0692[R]. Reston:AIAA,1991.
[17] IMPERATO L, LEONE G, VECHIONE L. Spray nozzle experiment comparison in laboratory and icing wind tunnel testing:AIAA-2000-0487[R]. Reston:AIAA, 2000.
[18] ESPOSITO B M, BROWN K J, BACHLO W D. Application of optical methods for icing wind tunnel cloud simulation extension to supercooled large droplets[C]//23rd Annual Conference on Liquid Atomization and Spray System. Ventura, CA:ILASS, 2011.
[19] NUKIYAMA S, TANASAWA Y. Experiments on the atomization of liquids in an air stream, report 3:On the droplet-size distribution in an atomized jet[J]. Transactions of the Japan Society of Mechanical Engineering, 1939, 5(1):62-67.
[20] ROSIN P, RAMMLER E. The laws governing the fineness of powdered coal[J]. Journal of the Institute of Fuel, 1933, 7(1):29-36.
[21] RIZK N K, LEFEBVRE A H. Drop-size distribution characteristics of spill-return atomizer[J]. AIAA Journal of Propulsion, 1985, 1(1):16-22.
[22] VON BLOTTNITZ H, PEHLKEN A, PRETZ T. The description of solid wastes by particle mass instead of particle size distributions[J]. Resources Conservation and Recycling, 2002, 34(3):193-207.
[23] MACIAS-GARCIA A, CUERDA-CORREA E M, DIAZ-DIRZ M A. Application of the Rosin-Rammler and Gates-Gaudin-Schuhmann models to the particle size distribution analysis of agglomerated cork[J]. Materials Characterization, 2004, 52(2):159-164.
[24] JENKINS D R, SHAW D E, MAHONEY M R. Fissure formation in coke. 3:Coke size distribution and statistical analysis[J]. Fuel, 2010, 89(7):1675-1689.
[25] GONZALEZ-TELLO C, VICARIA M. Analysis of the mean diameters and particle-size distribution in powders[J]. Particle & Particle System Characterization, 2012, 27(5):158-164.
[26] JANG C, BAE C, CHOI S. Characterization of prototype high-pressure swirl injector nozzles, part I:Prototype development and initial characterization of spray[J]. Atomization and Sprays, 2000, 10(2):159-178.
[27] YOO S S, HEWSON J C, DESJAR P E, et al. Numerical modeling and experimental measurements of high speed solid-cone water spray for use in fire suppression application[J]. International Journal of Multiphase Flow, 2004, 30(11):1369-1388.
[28] AHMADVAND F, TALAIE M R. CFD modeling of droplet dispersion in a venture scrubber[J]. Chemical Engineering Journal, 2010, 160(2):423-431.
[29] 梁坤峰, 高春艳, 王林. 基于制取流体冰的液-液雾化液滴粒径分布研究[J]. 热能与动力工程, 2011, 26(4):457-460. LIANG K F, GAO C Y, WANG L. Study of the liquid drop diameter distribution of a liquid-iiquid atomization based on preparation of slurry ice[J]. Journal of Engineering for Thermal Energy and Power, 2011, 26(4):457-460(in Chinese).
[30] MONTAZERI H, BLOKEN B, HENSEN J L M. CFD analysis of the impact of physical parameters on evaporative cooling by mist spray[J]. Applied Thermal Engineering, 2015, 75(S1):608-622.
[31] JIN Y, CHEN X D. Numerical study of the drying process of different sized particles in an industrial-scale spray[J]. Drying Technology, 2009, 27(3):371-381.
[32] DUNBER C A, HICKEY A J. Evaluation of probability density function to approximate particle size distributions of representative pharmaceutical aerosols[J]. Journal of Aerosol Science, 2000, 31(7):813-831.
[33] RAMAKRISHNAN K N. Modified Rosin-Rammler equation fordescribing particlesize distribution of milled powders[J]. Journal of Materials Science Letters, 2000, 19(21):1903-1906.
[34] GONZALEZ-TELLO P, CAMACHO F, VICARIA J M, et al. A modified Nukiyama-Tanasawa distribution function and a Rosin-Rammler model for the particle-size-distribution analysis[J]. Powder Technology, 2008, 186(3):278-281.
[35] WIGG L D. Drop-size prediction for twin-fluid atomizers[J]. Journal of the Institute of Fuel, 1964, 27(3):500-505.
[36] RIZK N K. Studies on liquid sheet disintegration in air blast atomizers[D]. London:Cranfield Institute of Technology, 1976.
[37] SINGH S K, SINGH V P. Extended near-field modelling and droplet size distribution for fuel-air explosive warhead[J]. Defence Science Journal, 2001, 51(3):303-314.
[38] BARRSOS J, LOZANO A, BARRERAS F, et al. Analysis and prediction of the spray produced by an internal mixing chamber twin-fluid nozzle[J]. Fuel Processing Technology, 2014, 128(12):1-9.
[39] SIVAKUMAR D, VANKESWARAM S K, SAKTHIKUMER R, et al. Analysis on the atomization characteristics of aviation biofuel discharging from simplex swirl atomizer[J]. International Journal of Multiphase Flow, 2015, 72(6):88-96.

文章导航

/