固体力学与飞行器总体设计

航天服肩法兰布局与上肢活动相关性试验

  • 李元丰 ,
  • 张万欣 ,
  • 陈景山
展开
  • 中国航天员科研训练中心 人因工程重点实验室, 北京 100094
李元丰,男,硕士研究生。主要研究方向:航天服工程。Tel:010-66360912,E-mail:yuanfeng4770@126.com;张万欣,女,硕士,研究员。主要研究方向:航天服工程。Tel:010-66362311,E-mail:zhangwanxin_2004@163.com

收稿日期: 2015-02-16

  修回日期: 2015-03-12

  网络出版日期: 2015-03-20

基金资助

载人航天领域预先研究项目(040301)

Correlation experiment between spacesuit scye bearing configuration and mobility of upper limbs

  • LI Yuanfeng ,
  • ZHANG Wanxin ,
  • CHEN Jingshan
Expand
  • National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China

Received date: 2015-02-16

  Revised date: 2015-03-12

  Online published: 2015-03-20

Supported by

Advance Research Project in Manned Spaceflight(040301)

摘要

航天服上躯干结构的构成主要包括各个法兰环开口及包络面,在各个法兰开口中,肩法兰是与人体交互作用的关键部位。为探究肩法兰布局的各个设计因素与人体上肢活动的相关性,采用混合水平正交试验方法设计开展试验,利用极差、方差和回归分析等手段,以人体上肢单手操作空间(RVWOH)和双手操作空间(RVWTH)作为评价指标,对航天服肩法兰的4个设计因素进行分析。结果表明肩法兰布局4个设计因素中,角度γ是影响单、双手操作空间的主要因素,以下依次是角度α,内径d和左右肩法兰中心距l;方差分析表明4个因素都对单、双手操作空间有显著或非常显著的影响;单、双手操作空间与4个设计因素关系可以用回归方程表达。通过试验研究确定了航天服肩法兰布局与人体上肢活动的相关性,为其设计及优化提供了依据。

本文引用格式

李元丰 , 张万欣 , 陈景山 . 航天服肩法兰布局与上肢活动相关性试验[J]. 航空学报, 2016 , 37(3) : 906 -915 . DOI: 10.7527/S1000-6893.2015.0074

Abstract

The upper torso architecture is the fundamental component of the spacesuit, which consists of flange apertures and envelope surface. Among the flange structures of the scye bearings, namely shoulder apertures, is the key section in the interaction between spacesuit and human body. In order to study the correlation between the scye bearing configuration and the mobility of upper limbs, the mixed-level orthogonal experiment is conducted. And these four influential factors are analyzed with the experiment by means of range, variance and regression analysis. During the analysis, relative volume of workspace with one hand(RVWOH) and relative volume of workspace with two hands(RVWTH) are selected as evaluation criteria. It is shown that among the four design factors, angle γ is the most important one for both RVWOH and RVWTH, followed by angle α, diameter of the ring d and distance between scye bearing centers l in turn. All the four factors have significant influence on RVWOH and RVWTH, as the variance analysis shows. The correlation between RVWOH, as well as RVWTH, and those factors could be described by regression expression. The correlation between spacesuit scye bearing and mobility of upper limbs is achieved through the experimental research, which could provide some reference for the design and optimization of the scye bearing configuration.

参考文献

[1] 陈景山. 航天服工程[M]. 北京:国防工业出版社, 2004:1-7. CHEN J S. Spacesuit engineering[M]. Beijing:National Defense Industry Press, 2004:1-7(in Chinese).
[2] 李潭秋. 国外中长期载人航天医学工程关键技术信息研究专题资料:第一集出舱航天服及其系统[M]. 北京:航天医学工程研究所, 2001:1-60. LI T Q. Foreign information of manned space flight medico-engineering key technology monographic study:First episode, EVA spacesuit system[M]. Beijing:Institute of Space Medico-Engineering, 2001:1-60(in Chinese).
[3] FERL J, HEWES L, CADOGAN D, et al. System considerations for an exploration spacesuit upper torso architecture:SAE-2006-01-2141[R]. Friedrichshafen:SAE,2006.
[4] GRAZIOSI D, FERL J, SPLAWN K, et al. Evaluation of a rear entry system for an advanced spacesuit:SAE-2005-01-2976[R]. Friedrichshafen:SAE, 2005.
[5] THOMSA K S, MCMANN H J. US spacesuits[M]. 2nd ed. Chichester:Springer-Praxis, 2012:341-411.
[6] JACOBS S E.Pressure-constrained, reduced-dof, interconnected parallel manipulators with applications to space suit design[D]. Washington, D.C.:University of Maryland, 2009:20-29.
[7] ROSS A, RHODES R, GRAZIOSI D, et al. Z-2 prototype space suit development:JSC-CN-30844[R]. Tucson:NASA Johnson Space Center, 2014.
[8] LEÓN P, HARRIS G L. NDX-2:development of an advanced planetary space suit demonstrator system for the lunar environment:AIAA-2011-5013[R]. Reston:AIAA,2011.
[9] BRADSHAW H. Analysis of scye bearing motion as applicable to the design of a morphing spacesuit[D]. Washington, D.C.:University of Maryland, 2011:20-29.
[10] 黄润秋, 刘卫华. 基于正交设计的滚石运动特征现场试验研究[J]. 岩石力学与工程学报, 2009, 28(5):882-891. HUANG R Q, LIU W H. In-situ test study of characteristics of rolling rock blocks based on orthogonal design[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5):882-891(in Chinese).
[11] 李云艳, 胡传荣. 试验设计与数据处理[M]. 北京:化学工业出版社, 2008:124-159. LI Y Y, HU C R. Experiment design and data processing[M]. Beijing:Chemical Industry Press, 2008:124-159(in Chinese).
[12] 袁志发, 贠海燕. 试验设计与分析[M]. 二版. 北京:中国农业出版社, 2008:139-168. YUAN Z F, YUN H Y. Experimental design and analysis[M]. 2nd ed. Beijing:China Agriculture Press, 2008:139-168(in Chinese).
[13] WILLIAMS D R, JOHNSON B J. EMU shoulder injury tiger team report:NASA/TM-2003-212058[R]. Washington, D.C.:NASA, 2003.
[14] 刘振宇. 人体上肢运动测量中肩关节旋转中心的估测[J]. 天津科技大学学报, 2007, 22(1):55-58. LIU Z Y. Estimation for rotated center of shoulder in human upper limb dynamic motion measurement[J]. Journal of Tianjin University of Science & Technology, 2007, 22(1):55-58(in Chinese).
[15] KLOPCAR N, TOMSIC M, LENARCIC J, et al. A kinematic model of the shoulder complex to evaluate the arm-reachable workspace[J]. Journal of Biomechanics, 2007, 40:86-91.
[16] 文剑. 舱外航天服活动性能关键技术研究[D]. 北京:北京交通大学, 2011:40-45. WEN J. Research on key technologies of space suit mobility for EVA operation[D]. Beijing:Beijing Jiaotong University, 2011:40-45(in Chinese).

文章导航

/