航空学报 > 2004, Vol. 25 Issue (1): 66-68

2D雷达组网中目标高度估计误差的Cramér-Rao限

王国宏1,2, 许建峰2, 毛士艺3, 何友1   

  1. 1. 海军航空工程学院信息融合研究所, 山东烟台 264001;2. 南京电子技术研究所, 江苏南京 210013;3. 北京航空航天大学电子工程学院, 北京 100083
  • 收稿日期:2002-12-26 修回日期:2003-07-07 出版日期:2004-02-25 发布日期:2004-02-25

On the CRLB of Height Estimation in a 2-Dimensional-Radar-Based Network

WANG Guo-hong1,2, XU Jian-feng2, MAO Shi-yi3, HE You1   

  1. 1. Naval Aeronautical Engineering Institute, Yantai 264001, China;2. Nanjing Research Institute of Electronics Technology, Nanjing 210013, China;3. Beijing University of Aeronautics and Astronautics, Beijing 100083, China
  • Received:2002-12-26 Revised:2003-07-07 Online:2004-02-25 Published:2004-02-25

摘要:

在由2坐标雷达组成的雷达网中,推导了目标高度估计误差的CRLB(Cramár-Rao限),并通过不同条件下的数值计算得到了一些结论。结果表明,目标高度估计误差的CRLB既与雷达的测角误差有关,也与目标和2个雷达站形成的夹角有关系,雷达配置在不同的高度上有利于目标高度估计的收敛性。这些结论对于2坐标雷达组网以及雷达网中的传感器管理具有指导意义。

关键词: 高度估计, Cramé, r-Rao限, 最大似然估计(ML), Fisher信息阵(FIM), 雷达组网

Abstract:

In a radar network composed of two 2-dimensional radars, the CRLB of height estimation is obtained. Some conclusions are drawn based on the numerical results for various conditions. It is concluded that the CRLB of height estimation is dependent on the bearing measurement errors of the radars. It is also found that the height estimation performance is greatly dependent on the angle in the triangle composed of the target and the two 2-dimensional radars, and that distributed placement of the radars at different heights can improve the convergence performance of target height estimation. The conclusions in this paper are useful in 2-dimensional radar-netting and in sensor management.

Key words: height estimation, Cramé, r-Rao low bound(CRLB), maximum likelihood estimation(ML), Fisher information matrix(FIM), radar netting