[1]Grant J A, Golombek M P, Parker T J, et al. Selecting landing sites for the 2003 Mars exploration rovers[J]. Planetary and Space Science, 2004, 52(1/2/3): 11-21.
[2]Golombek M P, Arvidson R E, Bell J F, et al. Assessment of Mars exploration rover landing site predictions[J]. Nature, 2005, 436(7047): 44-48.
[3]Frampton R, Ball J, Oittinen K, et al. GN&C and precision landing and hazard avoidance technology demonstration[R]. AIAA-2007-6174, 2007.
[4]Benjamin A L, Bolen S M, Smit G N, et al. Overview: precision landing/hazard avoidance concepts and MEMS technology insertion for human Mars lander missions[C]∥AIAA/IEEE Digital Avionics Systems Conference. 1997: 18-25.
[5]Huertas A, Cheng Y, Matthies L H. Automatic hazard detection for landers[C]∥Proceedings of 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space. 2008.
[6]Li S, Zhang L. Autonomous navigation and guidance scheme for precise and safe planetary landing[J]. Aircraft Engineering and Aerospace Technology: An International Journal, 2009, 81(6): 1-7.
[7]Stocky J F, Nelson R M, Stevens C M. NASA’s new millennium ST-9 project[C]∥American Geophysical Union, Fall Meeting. 2004.
[8]NASA Space Science Enterprise. New millennium program Space Technology 9 (ST9)[EB/OL]. [2009-09-07]. http: ∥nmp.jpl.nasa.gov/st9/.
[9]Autonomous Precision Landing and Hazard Detection and Avoidance. NASA small business innovation research & technology transfer 2007 program solicitations[EB/OL]. [2009-09-07]. http: ∥sbir.nasa.gov/SBIR/sbirsttr2007/solicitation/SBIR/TOPIC_X2.html.
[10]Landing—hazard detection and avoidance & pinpoint landing, JPL robotics research tasks[EB/OL]. [2009-09-07]. http: ∥www-robotics.jpl.nasa.gov/applications/applicationArea.cfm?App=3/.
[11]Paar G, Ulm M, Sidla O. Vision-based navigation for moon landing[R]. Final Report for ESTEC Purchase Order 142958, 1994.
[12]Frapard B, Mancuso S. Vision navigation for European landers and the NPAL project[C]∥Proceedings of the 6th International ESA Conference on Guidance, Navigation and Control Systems. 2006: 279-282.
[13]Polle B, Frapard B, Voirin T, et al. Vision based navigation for planetary exploration opportunity for AURORA[C]∥54th International Astronautical Congress of the International Astronautical Federation. 2003: 3635-3645.
[14]Wolf A A, Graves C, Powell R, et al. Systems for pinpoint landing at Mars[J]. Advances in the Astronautical Sciences, 2004, 119(Ⅲ): 2677-2696.
[15]Brand T, Fuhrman L, Geller D, et al. GN&C technology needed to achieve pinpoint landing accuracy at Mars[R]. AIAA-2004-4748, 2004.
[16]Klumpp A R. Pinpoint landing concepts for the Mars rover sample return mission[C]∥Proceedings of the Annual Rocky Mountain Guidance and Control Conference. 1989: 423-432.
[17]Paschall S C, Brady T, Cohanim B E, et al. A self contained method for safe & precise lunar landing[C]∥ 2008 IEEE Aerospace Conference. 2008.
[18]Brady T, Schwartz J, Tillier C. System architecture and operational concept for an autonomous precision lunar landing system[J]. Advances in the Astronautical Sciences, 2007, 128: 367-381.
[19]Epp C D, Smith T B. Autonomous precision landing and hazard detection and avoidance technology (ALHAT)[C]∥ IEEE Aerospace Conference Proceedings. 2007: 1-7.
[20]Epp C D. Autonomous landing and hazard avoidance technology (ALHAT)[R]. Johnson Space Center, 2008.
[21]Carpenter J D, Houdou B, Koschny D. The Moon next mission: a European lander at the lunar south pole [C]∥Joint Annual Meeting of LEAG-ICEUM-SRR. 2008.
[22]EADS Astrium LiGNC summary report[R]. ESA-EADS Astrium Report: EAA. TCN. 97388. ASTR, 2005: 1-33.
[23]Matsumoto K, Sasa S, Katayama Y, et al. Probabilistic obstacle avoidance strategy for safe Moon landing[C]∥54th International Astronautical Congress. 2003.
[24]Katayama Y, Ninomiya T, Hamada Y, et al. A study of obstacle detection and avoidance for lunar landing[J]. Uchu Kagaku Gijutsu Rengo Koenkai Koenshu (CD-ROM), 2006, 50: 1C02.
[25]de Lafontaine J, Neveu D, Lebel K. Autonomous planetary landing using a LIDAR sensor: the closed-loop system[C]∥Proceedings of the 6th International ESA Conference on Guidance, Navigation and Control Systems. 2006: 241-250.
[26]de Lafontaine J, Gueye O. Autonomous planetary landing using a LIDAR sensor: the navigation function[J]. Space Technology, 2004, 24(1): 7-18.
[27]de Lafontaine J, Ulitsky A, Tripp J W, et al. LAPS: the development of a scanning LIDAR system with GNC for autonomous hazard avoidance and precision landing[C]∥Proceedings of the SPIE—The International Society for Optical Engineering. 2004, 5418: 81-93.
[28]Discant A, Rogozan A, Rusu C, et al. Sensors for obstacle detection—a survey[C]∥ 30th International Spring Seminar on Electronics Technology. 2007: 100-105.
[29]Lau B, Chao T H. Hazard detection and avoidance sensor for NASA’s planetary landers[C]∥Proceedings of the SPIE—The International Society for Optical Engineering. 1992, 1702: 132-138.
[30]Wang D Y, Huang X Y, Guan Y F. GNC system scheme for lunar soft landing spacecraft[J]. Advances in Space Research, 2008, 42(2): 379-385.
[31]Kavaya M J, Amzajerdian F, Koch G J, et al. Coherent LIDAR activities at NASA langley research center[C]∥14th Coherent Laser Radar Conference. 2007.
[32]Apker T B, Geyer M S, Johnson E N. Obstacle detection and cataloging using radiating sensors[R]. AIAA-2007-6827, 2007.
[33]Johnson A, Montgomery J, Matthies L. Vision guided landing of an autonomous helicopter in hazardous terrain[C]∥Proceedings of the IEEE International Conference on Robotics and Automation. 2005: 3966-3971.
[34]Liebe C C, Padgett C, Chapsky J, et al. Spacecraft hazard avoidance utilizing structured light[C]∥IEEE Aerospace Conference Proceedings. 2006.
[35]Pollard B D, Sadowy G, Moller D, et al. A millimeter-wave phased array radar for hazard detection and avoidance on planetary landers[C]∥IEEE Aerospace Electronics Symposium. 2003.
[36]Johnson A E, Langley C, Mukherji R, et al. Full-scale testing and platform stabilization of a scanning LIDAR system for planetary landing[C]∥Proceedings of the SPIE—The International Society for Optical Engineering. 2008, 6960: 1-10.
[37]Pierrottet D F, Amzajerdian F, Meadows B L, et al. Characterization of 3-D imaging LIDAR for hazard avoidance and autonomous landing on the Moon[J]. The International Society for Optical Engineering, 2007, 6550(1): 1-9.
[38]马超杰, 吴丹. 新体制军用激光雷达成像技术[J]. 航空兵器, 2007(4): 25-29.
Ma Chaojie, Wu Dan. New imaging ladar system techno-logy for military application[J]. Aero Weaponry, 2007(4): 25-29. (in Chinese)
[39]Brady T, Robertson E, Epp C, et al. Hazard detection methods for lunar landing[C]∥IEEE Aerospace Conference Proceedings. 2009: 1-8.
[40]Matsumoto K, Sasa S, Katayama Y, et al. Optical sensors in obstacle detection and avoidance for moon landing[C]∥Proceedings of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space. 2003.
[41]Sawai S, Katayama Y, Sasa S, et al. Obstacle detection and avoidance for landing on lunar surface[C]∥ Workshop on Astrodynamics and Flight Mechanics. 2002: 114-119.
[42]Bajracharya M. Single image based hazard detection for a planetary lander[C]∥Proceedings of the Fifth Biannual World Automation Congress. 2002, 14: 585-590.
[43]Matthies L, Huertas A, Cheng Y, et al. Stereo vision and shadow analysis for landing hazard detection[C]∥IEEE International Conference on Robotics and Automation. 2008: 19-23.
[44]Matthies L, Huertas A, Cheng Y, et al. Landing hazard detection with stereo vision and shadow analysis[R]. AIAA-2007-2835, 2007.
[45]Gor V, Castano R, Manduchi R, et al. Autonomous rock detection for Mars terrain[R]. AIAA-2001-4597, 2001.
[46]Huertas A, Cheng Y, Madison R. Passive imaging based multi-cue hazard detection for spacecraft safe landing[C]∥IEEE Aerospace Conference Proceedings. 2006: 1-14.
[47]Leroy B, Medioni G, Johnson E, et al. Crater detection for autonomous landing on asteroids[J]. Image and Vision Computing, 2001, 19(11): 787-792.
[48]Bernard D E, Golombek M P. Crater and rock hazard modeling for Mars landing[R]. AIAA-2001-4697, 2001.
[49]张泽旭, 崔平远. 基于CCD着陆相机的行星软着陆岩石检测与规避方法[J]. 航空学报, 2008, 29(6): 1510-1516.
Zhang Zexu, Cui Pingyuan. An algorithm of rock detection and avoidance for planetary soft landing based on CCD landing camera[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1510-1516. (in Chinese)
[50]Garcia-Pardo P J, Sukhatme G S, Montgomery J F. Towards vision-based safe landing for an autonomous helicopter[J]. Robotics and Autonomous Systems, 2002, 38(1): 19-29.
[51]Ma W Y, Manjunath B S. Edge flow: a framework of boundary detection and image segmentation[C]∥Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1997: 744-749.
[52]Cheng Y, Johnson A E, Mattheis L H, et al. Passive imaging based hazard avoidance for spacecraft safe landing[C]∥Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics and Automation in Space. 2001.
[53]Cheng Y, Johnson A, Matthies L. MER-DIMES: a planetary landing application of computer vision[C]∥ Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 1: 806-813.
[54]Matsumoto K, Sasa S, Wakabayashi S, et al. Research for safe and pin-point lunar landing and exploration[R]. NAL Report-2003033, 2003.
[55]Neveu D, de Lafontaine J, Lebel K. Validation of autonomous hazard-avoidance Mars landing via closed-loop simulations[R]. AIAA-2005-6024, 2005.
[56]Jones B M, Member S, Howard A, et al. An imaging technique for safe spacecraft landing and autonomous hazard avoidance[C]∥Proceedings of 2nd IEEE International Conference on Space Mission Challenges for Information Technology. 2006: 349-356.
[57]Johnson A E, Huertas A, Werner R A, et al. Analysis of on-board hazard detection and avoidance for safe lunar landing[C]∥IEEE Aerospace Conference Proceedings. 2008: 1-9.
[58]Johnson A E, Klumpp A R, Collier J B, et al. LIDAR-based hazard avoidance for safe landing on Mars[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(6): 1091-1099.
[59]宋政吉, 耿殿伍, 姜兴渭. 一种基于高程图的危险区识别算法[J]. 哈尔滨工业大学学报, 2006, 38(6): 946-949.
Song Zhengji, Geng Dianwu, Jiang Xingwei. Hazard detection method for lunar soft-landing based on elevation map[J]. Journal of Harbin Institute of Technology, 2006, 38(6): 946-949. (in Chinese)
[60]Howard A, Seraji H. Multi-sensor terrain classification for safe spacecraft landing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(4): 1122-1131.
[61]Seraji H, Serrano N. A multisensor decision fusion system for terrain safety assessment[J]. IEEE Transactions on Robotics, 2009, 25(1): 99-108.
[62]Cohanim B E, Collins B K. Landing point designation algorithm for lunar landing[J]. Journal of Spacecraft and Rockets, 2009, 46(4): 858-864.
[63]Camara F, Rogata P, Sotto E D, et al. Design and performance assessment of hazard avoidance techniques for vision based landing[R]. AIAA-2006-6593, 2006.
[64]Rogata P, Sotto E D, Camara F, et al. Design and performance assessment of hazard avoidance techniques for vision-based landing[J]. Acta Astronautica, 2007, 61(1/2/3/4/5/6): 63-77.
[65]Sostaric R R. Powered descent trajectory guidance and some considerations for human lunar landing[J]. Advances in the Astronautical Sciences, 2007, 128: 349-366.
[66]Sinclair A J, Fitz-Coy N G. Comparison of obstacle avoidance strategies for Mars landers[J]. Journal of Spacecraft and Rockets, 2003, 40(3): 388-395.
[67]Wong E C, Singh G. Guidance and control design for hazard avoidance and safe landing on Mars[J]. Journal of Spacecraft and Rockets, 2006, 43(2): 378-384.
[68]Rimon E, Koditschek D E. Exact robot navigation using artificial potential functions[J]. IEEE Transactions on Robotics and Automation, 1992, 8(5): 501-518.
[69]McInnes C R. Path shaping guidance for terminal lunar descent[J]. Acta Astronautica, 1995, 36(7): 367-377.
[70]Finzi A E, Gilardi G, Alippi S, et al. Automatic optimum Moon-landing[C]∥48th International Astronautical Congress. 1997: 235-242.
[71]Hamada Y, Ninomiya T, Sasa S, et al. A study on SELENE-B guidance and control system for pin-point lunar landing[C]∥Proceedings of the 47th Space Sciences and Technology Conference. 2003: 180-185.
[72]Hamada Y, Ninomiya T, Kstayama Y, et al. Feasibility study for precise lunar landing using SELENE-B lander configuration[R]. JAXA Research and Development Report JAXA-RR-05-013E, 2005.
|