1 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]∥ Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1. New York: ACM, 2015: 91–99.
|
2 |
ZHANG Y Y, LU T W. RecFRCN: Few-shot object detection with recalibrated faster R-CNN[J]. IEEE Access, 2023, 11: 121109-121117.
|
3 |
FAN J Y, LEE J, JUNG I, et al. Improvement of object detection based on faster R-CNN and YOLO[C]∥2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). Piscataway: IEEE Press, 2021: 1-4.
|
4 |
KÖREZ A, BARISCI N. Object detection with low capacity GPU systems using improved faster R-CNN[J]. Applied Sciences, 2019, 10(1): 83.
|
5 |
周兵, 李润鑫, 尚振宏, 等. 基于改进的Faster R-CNN目标检测算法[J]. 激光与光电子学进展, 2020, 57(10): 101009.
|
|
ZHOU B, LI R X, SHANG Z H, et al. Object detection algorithm based on improved faster R-CNN[J]. Laser & Optoelectronics Progress, 2020, 57(10): 101009 (in Chinese).
|
6 |
ABBAS S M, SINGH D S N. Region-based object detection and classification using faster R-CNN[C]∥ 2018 4th International Conference on Computational Intelligence & Communication Technology (CICT). Piscataway: IEEE Press, 2018: 1-6.
|
7 |
GAVRILESCU R, ZET C, FOȘALĂU C, et al. Faster R-CNN: An approach to real-time object detection[C]∥ 2018 International Conference and Exposition on Electrical and Power Engineering (EPE). Piscataway: IEEE Press, 2018: 165-168.
|
8 |
REN Y, ZHU C R, XIAO S P. Small object detection in optical remote sensing images via modified faster R-CNN[J]. Applied Sciences, 2018, 8(5): 813.
|
9 |
RAKHI A M, DHORAJIYA A P, SARANYA P. Enhanced mask-RCNN for ship detection and segmentation[C]∥International Conference on Ubiquitous Computing and Intelligent Information Systems. Singapore: Springer, 2022: 199-210.
|
10 |
FANG Y X, DAI Y, HE G L, et al. A mask RCNN based automatic reading method for pointer meter[C]∥2019 Chinese Control Conference (CCC). Piscataway: IEEE Press, 2019: 8466-8471.
|
11 |
ZHANG F, WANG X Y, ZHOU S L, et al. Arbitrary-oriented ship detection through center-head point extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5612414.
|
12 |
HUANG B, XU T F, LUO Y X, et al. A novel nearest feature learning classifier for ship target detection in optical remote sensing images[C]∥International Conference in Communications, Signal Processing, and Systems. Singapore: Springer, 2019: 600-606.
|
13 |
NAJIBI M, SINGH B, DAVIS L. AutoFocus: Efficient multi-scale inference[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 9744-9754.
|
14 |
QUAN Y, ZHANG D, ZHANG L Y, et al. Centralized feature pyramid for object detection[J]. IEEE Transactions on Image Processing, 2023, 32: 4341-4354.
|
15 |
CHANG Y J, WU Y D, LIAO Y L, et al. Modified YOLO network model for metaphase cell detection in antinuclear antibody images[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107392.
|
16 |
XING Y G, YI Z P, LIANG Z X, et al. Edge-on low-surface-brightness galaxy candidates detected from SDSS images using YOLO[J]. The Astrophysical Journal Supplement Series, 2023, 269(2): 59.
|
17 |
CHEN L Q, SHI W X, FAN C E, et al. A novel coarse-to-fine method of ship detection in optical remote sensing images based on a deep residual dense network[J]. Remote Sensing, 2020, 12(19): 3115.
|
18 |
SONG W S, YAN D M, YAN J, et al. Ship detection and identification in SDGSAT-1 glimmer images based on the glimmer YOLO model[J]. International Journal of Digital Earth, 2023, 16(2): 4687-4706.
|
19 |
WANG J, PAN Q R, LU D H, et al. An efficient ship-detection algorithm based on the improved YOLOv5[J]. Electronics, 2023, 12(17): 3600.
|
20 |
HA H Y, FLEITES F, CHEN S C. Building multi-model collaboration in detecting multimedia semantic concepts[C]∥Proceedings of the 9th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing. Piscataway: IEEE Press, 2013: 205-212.
|
21 |
ZHANG Y N, TONG X M, YANG T, et al. Multi-model estimation based moving object detection for aerial video[J]. Sensors, 2015, 15(4): 8214-8231.
|
22 |
MA W P, GUO Q Q, WU Y, et al. A novel multi-model decision fusion network for object detection in remote sensing images[J]. Remote Sensing, 2019, 11(7): 737.
|
23 |
XU J, WANG W, WANG H Y, et al. Multi-model ensemble with rich spatial information for object detection[J]. Pattern Recognition, 2020, 99: 107098.
|
24 |
KUNDID VASIĆ M, PAPIĆ V. Multimodel deep learning for person detection in aerial images[J]. Electronics, 2020, 9(9): 1459.
|
25 |
YANG D F, SOLIHIN M I, ZHAO Y W, et al. A review of intelligent ship marine object detection based on RGB camera[J]. IET Image Processing, 2024, 18(2): 281-297.
|
26 |
FINGAS M F, BROWN C E. Review of ship detection from airborne platforms[J]. Canadian Journal of Remote Sensing, 2001, 27(4): 379-385.
|
27 |
YASIR M, WAN J H, XU M M, et al. Ship detection based on deep learning using SAR imagery: A systematic literature review[J]. Soft Computing, 2023, 27(1): 63-84.
|
28 |
TEIXEIRA E, ARAUJO B, COSTA V, et al. Literature review on ship localization, classification, and detection methods based on optical sensors and neural networks[J]. Sensors, 2022, 22(18): 6879.
|
29 |
LIN Y, WANG C F, CHANG C Y, et al. An efficient framework for counting pedestrians crossing a line using low-cost devices: The benefits of distilling the knowledge in a neural network[J]. Multimedia Tools and Applications, 2021, 80(3): 4037-4051.
|
30 |
XIA G S, BAI X, DING J, et al. DOTA: A large-scale dataset for object detection in aerial images[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3974-3983.
|
31 |
BYNUM L, DOSTER T, EMERSON T H, et al. Rotational equivariance for object classification using xView[C]∥IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2020: 3684-3687.
|
32 |
LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307.
|
33 |
ZHANG Y L, YUAN Y, FENG Y C, et al. Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5535-5548.
|
34 |
ZOU Z X, SHI Z W. Random access memories: A new paradigm for target detection in high resolution aerial remote sensing images[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1100-1111.
|
35 |
NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]∥18th International Conference on Pattern Recognition (ICPR’06). Piscataway: IEEE Press, 2006: 850-855.
|
36 |
BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS—improving object detection with one line of code[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 5562-5570.
|
37 |
SOLOVYEV R, WANG W M, GABRUSEVA T. Weighted boxes fusion: Ensembling boxes from different object detection models[J]. Image and Vision Computing, 2021, 107: 104117.
|
38 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 7464-7475.
|
39 |
GE Z, LIU S T, WANG F, et al. YOLOX: Exceeding YOLO series in 2021[DB/OL]. arXiv preprint: 2107.08430, 2021.
|
40 |
CHEN Z, LIU C, FILARETOV V, et al. Multi-scale ship detection algorithm based on YOLOv7 for complex scene SAR images[J]. Remote Sensing, 2023, 15(8): 2071.
|