1 |
AMATO K, GAYTAN S, MURR L, et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting[J]. Acta Materialia, 2012, 60(5): 2229-2239.
|
2 |
ZHANG Y, LI Z G, NIE P L, et al. Effect of ultrarapid cooling on microstructure of laser cladding IN718 coating[J]. Surface Engineering, 2013, 29: 414-418.
|
3 |
FISK M, ANDERSSON J, DU RIETZ R, et al. Precipitate evolution in the early stages of ageing in Inconel 718 investigated using small-angle X-ray scattering[J]. Materials Science & Engineering A, 2014, 612: 202-207.
|
4 |
李涤尘, 鲁中良, 田小永, 等. 增材制造: 面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4): 15-31.
|
|
LI D C, LU Z L, TIAN X Y, et al. Additive manufacturing—Revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 15-31 (in Chinese).
|
5 |
张佩宇, 周鑫, 李应红. 单晶涡轮叶片高能束修复研究进展[J]. 航空学报, 2022, 43(4): 147-171.
|
|
ZHANG P Y, ZHOU X, LI Y H. Progress on high energy beam repair of single crystal turbine blades[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 147-171 (in Chinese).
|
6 |
SAFDAR S, PINKERTON A J, LI L, et al. An anisotropic enhanced thermal conductivity approach for modelling laser melt pools for Ni-base super alloys[J]. Applied Mathematical Modelling, 2013, 37(3): 1187-1195.
|
7 |
成诚. 激光再制造镍基高温合金工艺及其高温拉伸性能的研究[D]. 南京: 南京航空航天大学, 2016: 7-8.
|
|
CHENG C. Research on laser remanufacturing process of nickel-based super-alloy and their high-temperature tensile properties[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 7-8 (in Chinese).
|
8 |
CHEN Z, CHEN S G, WEI Z Y, et al. Anisotropy of nickel-based superalloy K418 fabricated by selective laser melting[J]. Progress in Natural Science: Materials International, 2018, 28(4): 496-504.
|
9 |
ZENG Y, LI L, HUANG W, et al. Effect of thermal cycles on laser direct energy deposition repair performance of nickel-based superalloy: Microstructure and tensile properties[J]. International Journal of Mechanical Sciences, 2022, 221: 107173.
|
10 |
FERRERI N C, GHORBANPOUR S, BHOWMIK S, et al. Effects of build orientation and heat treatment on the evolution of microstructure and mechanical properties of alloy Mar-M-509 fabricated via laser powder bed fusion[J]. International Journal of Plasticity, 2019, 121: 116-133.
|
11 |
徐翔宇, 曹阳, 王辉, 等. 激光熔覆修复叶片的过渡区力学性能试验研究[J]. 现代制造工程, 2021(9): 118-123.
|
|
XU X Y, CAO Y, WANG H, et al. Experimental research on mechanical properties of the blade transition zone by laser cladding repair process[J]. Modern Manufacturing Engineering, 2021(9): 118-123 (in Chinese).
|
12 |
WANG K, BAO R, LIU D, et al. Plastic anisotropy of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy[J]. Materials Science and Engineering: A, 2019, 746: 276-289.
|
13 |
ZHAO Z N, YANG W Z, LI L, et al. Synchronously Enhanced strength-ductility of L-DEDed GH4169 with varying energy input[J]. International Journal of Mechanical Sciences, 2023, 253: 108402.
|
14 |
ZHAO Z N, LI L, YANG W Z, et al. A comprehensive study of the anisotropic tensile properties of laser additive manufactured Ni-based superalloy after heat treatment[J]. International Journal of Plasticity, 2022, 148: 103-147.
|
15 |
ZHONG C L, GASSER A, KITTEL J, et al. Microstructures and tensile properties of Inconel 718 formed by high deposition-rate laser metal deposition[J]. Journal of Laser Applications, 2016, 28(2): 022010.
|
16 |
SUI S, TAN H, CHEN J, et al. The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing[J]. Acta Materialia, 2019, 164: 413-427.
|
17 |
张杰, 张群莉, 李栋, 等. δ时效处理对激光增材修复Inconel 718合金组织与性能的影响[J]. 中国激光, 2020, 47(1): 0102001.
|
|
ZHANG J, ZHANG Q L, LI D, et al. Effect of δ aging treatment on microstructure and tensile properties of repaired inconel 718 alloy using laser additive manufacturing[J]. Chinese Journal of Lasers, 2020, 47(1): 0102001 (in Chinese).
|
18 |
卞宏友, 赵翔鹏, 李英, 等. 激光沉积修复GH4169合金试验研究[J]. 红外与激光工程, 2016, 45(2): 0206006.
|
|
BIAN H Y, ZHAO X P, LI Y, et al. Experimental study on laser deposition repair GH4169 alloy component[J]. Infrared and Laser Engineering, 2016, 45(2): 0206006 (in Chinese).
|
19 |
明宪良, 陈静, 谭华, 等. 激光修复GH4169高温合金的持久断裂机制研究[J]. 中国激光, 2015, 42(4): 0403005.
|
|
MING X L, CHEN J, TAN H, et al. Research on persistent fracture mechanism of laser forming repaired GH4169 superalloy[J]. Chinese Journal of Lasers, 2015, 42(4): 0403005 (in Chinese).
|
20 |
张少平, 隋尚, 明宪良, 等. 激光修复GH4169高温合金的组织与力学性能[J]. 应用激光, 2015, 35(3): 277-281.
|
|
ZHANG S P, SUI S, MING X L, et al. Microstructure and mechanical properties of laser repaired GH4169 superalloy[J]. Applied Laser, 2015, 35(3): 277-281 (in Chinese).
|
21 |
RADHAKRISHNAN B, THOMPSON R G. Solidification of the nickel-base superalloy 718: A phase diagram approach[J]. Metallurgical Transactions A, 1989, 20(12): 2866-2868.
|
22 |
TAKATA N, ARMAKI H G, TERADA Y, et al. Plastic deformation of the C14 Laves phase (Fe, Ni)2Nb[J]. Scripta Materialia, 2013, 68(8): 615-618.
|
23 |
SUI S, CHEN J, FAN E X, et al. The influence of Laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718[J]. Materials Science and Engineering: A, 2017, 695: 6-13.
|