收稿日期:2022-12-01
修回日期:2023-02-01
接受日期:2023-03-07
出版日期:2023-10-15
发布日期:2023-03-21
通讯作者:
罗阳军
E-mail:yangjunluo@hit.edu.cn
基金资助:
Jiaqi HE1, Weida WU1, Yangjun LUO2(
)
Received:2022-12-01
Revised:2023-02-01
Accepted:2023-03-07
Online:2023-10-15
Published:2023-03-21
Contact:
Yangjun LUO
E-mail:yangjunluo@hit.edu.cn
Supported by:摘要:
星载天线反射器形面精度对其电磁性能影响至关重要,基于压电作动器的形面主动控制方法是保障反射器在轨服役期间形面精度的一个有效手段。本文考虑反射器结构在轨期间的材料属性时变不确定性,结合数字孪生技术提出了一种反射器形面鲁棒性主动控制方法。首先,将材料属性在概率-凸集模型(P-CS)下统一量化,并基于贝叶斯理论和位移监测实现数据驱动的模型动态更新;其次,以反射器结构面外位移鲁棒性作为结构形面精度不确定性评价指标,建立作动器电压布局优化模型,并用空间场函数描述电压布局形式,实现大规模离散设计变量的降维映射。该动态更新布局优化模型可分解为一系列序列子优化问题,基于代理模型优化算法进行求解。最后,将本文方法应用于六边形反射器形面主动控制问题中,分别讨论了施加不同种电压约束的情况,数值算例验证了本算法的有效性和适用性。
中图分类号:
何佳琦, 吴伟达, 罗阳军. 基于P-CS模型与数字孪生的星载天线反射器形面鲁棒性控制方法[J]. 航空学报, 2023, 44(19): 328343.
Jiaqi HE, Weida WU, Yangjun LUO. A robust shape control method for space-borne antenna reflectors based on P-CS uncertainty quantification model and digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 328343.
| 1 | 宋祥帅, 谭述君, 高飞雄, 等. 星载天线反射器形面主动控制研究现状与展望[J]. 空间电子技术, 2022, 19(1): 1-12. |
| SONG X S, TAN S J, GAO F X, et al. Research progresses and prospect of active shape control for space-borne antenna reflectors[J]. Space Electronic Technology, 2022, 19(1): 1-12 (in Chinese). | |
| 2 | TANAKA H. Surface error estimation and correction of a space antenna based on antenna gainanalyses[J]. Acta Astronautica, 2011, 68(7-8): 1062-1069. |
| 3 | SONG X S, TAN S J, WANG E M, et al. Active shape control of an antenna reflector using piezoelectric actuators[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(18-19): 2733-2747. |
| 4 | HAFTKA R T, ADELMAN H M. An analytical investigation of shape control of large space structures by applied temperatures[J]. AIAA Journal, 1985, 23(3): 450-457. |
| 5 | SONG X S, CHU W M, TAN S J, et al. Adaptive shape control for antenna reflectors based on feedback error learning algorithm[J]. AIAA Journal, 2020, 58(7): 3229-3240. |
| 6 | LU Y F, YUE H H, DENG Z Q, et al. Adaptive shape control for thermal deformation of membrane mirror with in-plane PVDF actuators[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 1-11. |
| 7 | XU X, LUO Y Z. Multi-objective shape control of prestressed structures with genetic algorithms[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222(8): 1139-1147. |
| 8 | SHAO S B, SONG S Y, XU M L, et al. Mechanically reconfigurable reflector for future smart space antenna application[J]. Smart Materials and Structures, 2018, 27(9): 095014. |
| 9 | HILL J, WANG K W, FANG H. Advances of surface control methodologies for flexible space reflectors[J]. Journal of Spacecraft and Rockets, 2013, 50(4): 816-828. |
| 10 | WANG Z W, LI T J, CAO Y Y. Active shape adjustment of cable net structures with PZT actuators[J]. Aerospace Science and Technology, 2013, 26(1): 160-168. |
| 11 | ZHANG S X, DU J L, DUAN B Y, et al. Integrated structural-electromagnetic shape control of cable mesh reflector antennas[J]. AIAA Journal, 2014, 53(5): 1395-1399. |
| 12 | 孟松鹤, 叶雨玫, 杨强, 等. 数字孪生及其在航空航天中的应用[J]. 航空学报, 2020, 41(9): 023615. |
| MENG S H, YE Y M, YANG Q, et al. Digital twin and its aerospace applications[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 023615 (in Chinese). | |
| 13 | Cearley D W, Burke B, Searle S, et al. Top 10 strategic technology trends for 2018 [EB/OL]. (2017-10-03) [2023-03-21]. . |
| 14 | 董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3): 023981. |
| DONG L T, ZHOU X, ZHAO F B, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 023981 (in Chinese). | |
| 15 | YU J S, SONG Y, TANG D Y, et al. A digital twin approach based on nonparametric Bayesian network for complex system health monitoring[J]. Journal of Manufacturing Systems, 2021, 58: 293-304. |
| 16 | LI C Z, MAHADEVAN S, LING Y, et al. Dynamic Bayesian network for aircraft wing health monitoring digital twin[J]. AIAA Journal, 2017, 55(3): 930-941. |
| 17 | ELISHAKOFF I. Essay on uncertainties in elastic and viscoelastic structures: From A. M. Freudenthal’s criticisms to modern convex modeling[J]. Computers & Structures, 1995, 56(6): 871-895. |
| 18 | JIANG C, HAN X, LU G Y, et al. Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(33-36): 2528-2546. |
| 19 | LIMBOURG P, DE ROCQUIGNY E. Uncertainty analysis using evidence theory - confronting level-1 and level-2 approaches with data availability and computational constraints[J]. Reliability Engineering & System Safety, 2010, 95(5): 550-564. |
| 20 | FAES M G R, DAUB M, MARELLI S, et al. Engineering analysis with probability boxes: A review on computational methods[J]. Structural Safety, 2021, 93: 102092. |
| 21 | 董玉革, 陈心昭, 赵显德, 等. 基于模糊事件概率理论的模糊可靠性分析通用方法[J]. 计算力学学报, 2005, 22(3): 281-286. |
| DONG Y G, CHEN X Z, ZHAO X D, et al. A general approach for fuzzy reliability analysis based on the fuzzy probability theory[J]. Chinese Journal of Computational Mechanics, 2005, 22(3): 281-286 (in Chinese). | |
| 22 | LI J W, JIANG C. A novel imprecise stochastic process model for time-variant or dynamic uncertainty quantification[J]. Chinese Journal of Aeronautics, 2022, 35(9): 255-267. |
| 23 | PING M H, HAN X, JIANG C, et al. A time-variant uncertainty propagation analysis method based on a new technique for simulating non-Gaussian stochastic processes[J]. Mechanical Systems and Signal Processing, 2021, 150: 107299. |
| 24 | WANG L, WANG X J, CHEN X, et al. Time-variant reliability model and its measure index of structures based on a non-probabilistic interval process[J]. Acta Mechanica, 2015, 226(10): 3221-3241. |
| 25 | MENG Z, GUO L B, HAO P, et al. On the use of probabilistic and non-probabilistic super parametric hybrid models for time-variant reliability analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 386: 114113. |
| 26 | BISSIRI P G, HOLMES C C, WALKER S G. A general framework for updating belief distributions[J]. Journal of the Royal Statistical Society Series B, Statistical Methodology, 2016, 78(5): 1103-1130. |
| 27 | WANG R C. Analysis and improvement of combination rule in D-S theory[J]. Applied Mechanics and Materials, 2014, 556-562: 3930-3934. |
| 28 | PAN Y, ZHANG L M, LI Z W, et al. Improved fuzzy Bayesian network-based risk analysis with interval-valued fuzzy sets and D-S evidence theory[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(9): 2063-2077. |
| 29 | HE J Q, LUO Y J. A Bayesian updating method for non-probabilistic reliability assessment of structures with performance test data[J]. Computer Modeling in Engineering & Sciences, 2020, 125(2): 777-800. |
| 30 | 何佳琦, 贾晓璇, 吴伟达, 等. P-CS不确定性量化模型与其性能数据驱动更新方法[J]. 力学学报, 2022, 54(10): 2808-2824. |
| HE J Q, JIA X X, WU W D, et al. P-CS uncertainty quantification model and its performance data-driven updating method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2808-2824 (in Chinese). | |
| 31 | SILVA G A DA, CARDOSO E L, BECK A T. Comparison of robust, reliability-based and non-probabilistic topology optimization under uncertain loads and stress constraints[J]. Probabilistic Engineering Mechanics, 2020, 59: 103039. |
| 32 | KANNO Y. On three concepts in robust design optimization: absolute robustness, relative robustness, and less variance[J]. Structural and Multidisciplinary Optimization, 2020, 62(2): 979-1000. |
| 33 | CHENG J, LIU Z Y, QIAN Y M, et al. Non-probabilistic robust equilibrium optimization of complex uncertain structures[J]. Journal of Mechanical Design, 2020, 142(2): 021405. |
| 34 | RIBEIRO L H M S, POGGETTO V F DAL, ARRUDA J R F. Robust optimization of attenuation bands of three-dimensional periodic frame structures[J]. Acta Mechanica, 2022, 233(2): 455-475. |
| 35 | ZHAN J J, LUO Y J. Robust topology optimization of hinge-free compliant mechanisms with material uncertainties based on a non-probabilistic field model[J]. Frontiers of Mechanical Engineering, 2019, 14(2): 201-212. |
| 36 | KANG Z, WU C L, LUO Y J, et al. Robust topology optimization of multi-material structures considering uncertain graded interface[J]. Composite Structures, 2019, 208: 395-406. |
| 37 | ZHANG S X, DUAN B Y. Integrated structural-electromagnetic optimization of cable mesh reflectors considering pattern degradation for random structural errors[J]. Structural and Multidisciplinary Optimization, 2020, 61(4): 1621-1635. |
| 38 | YUE X W, WEN Y C, HUNT J H, et al. Surrogate model-based control considering uncertainties for composite fuselage assembly[J]. Journal of Manufacturing Science and Engineering, 2018, 140(4): 041017. |
| 39 | LUO Y Q, WANG Z D, WEI G L, et al. Fuzzy-logic-based control, filtering, and fault detection for networked systems: A survey[J]. Mathematical Problems in Engineering, 2015, 2015: 1-11. |
| 40 | FENG Z Y, SHE J H, XU L. A brief review and insights into matrix inequalities for H∞ static-output-feedback control and a local optimal solution[J]. International Journal of Systems Science, 2019, 50(12): 2292-2305. |
| 41 | WANG L, XIONG C, WANG X J, et al. Hybrid time-variant reliability estimation for active control structures under aleatory and epistemic uncertainties[J]. Journal of Sound and Vibration, 2018, 419: 469-492. |
| 42 | ZHU L P, ELISHAKOFF I, STARNES J H. Derivation of multi-dimensional ellipsoidal convex model for experimental data[J]. Mathematical and Computer Modelling, 1996, 24(2): 103-114. |
| 43 | LI Y L, WANG X J, WANG C, et al. Non-probabilistic Bayesian update method for model validation[J]. Applied Mathematical Modelling, 2018, 58: 388-403. |
| 44 | SUN Y, ZHOU Y, KE Z, et al. Stiffener layout optimization framework by isogeometric analysis-based stiffness spreading method[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 390: 114348. |
| 45 | HAO P, LIU D C, ZHANG K P, et al. Intelligent layout design of curvilinearly stiffened panels via deep learning-based method[J]. Materials & Design, 2021, 197: 109180. |
| 46 | FERRARI F, SIGMUND O. Revisiting topology optimization with buckling constraints[J]. Structural and Multidisciplinary Optimization, 2019, 59(5): 1401-1415. |
| 47 | LUO Y J, ZHAN J J. Linear buckling topology optimization of reinforced thin-walled structures considering uncertain geometrical imperfections[J]. Structural and Multidisciplinary Optimization, 2020, 62(6): 3367-3382. |
| 48 | LUO Y J, BAO J W. A material-field series-expansion method for topology optimization of continuum structures[J]. Computers & Structures, 2019, 225: 106122. |
| 49 | LI C C, DER KIUREGHIAN A. Optimal discretization of random fields[J]. Journal of Engineering Mechanics, 1993, 119(6): 1136-1154. |
| 50 | ROSENBLATT M. Remarks on a multivariate transformation[J]. The Annals of Mathematical Statistics, 1952, 23(3): 470-472. |
| 51 | JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492. |
| 52 | Joseph VR, Hung Y. Orthogonal-maximin Latin hypercube designs[J]. Statistica Sinica, 2008, 18(1): 171-186. |
| 53 | SVANBERG K. The method of moving asymptotes—a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373. |
| 54 | STEEVES J, PELLEGRINO S. Ultra-thin highly deformable composite mirrors: AIAA-2013-1523[R]. Reston: AIAA, 2013. |
| 55 | LAN L, JIANG S D, ZHOU Y, et al. An experimental study on reflector wave-front error correction using PZT actuators[C]∥ SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. San Francisco: SPIE, 2016: 86-100. |
| [1] | 黄熠玮, 耿一斌, 高天贺, 胡轩玮, 王圆, 马红艳, 田阔. 数字孪生驱动的结构全场变形高精度反演方法[J]. 航空学报, 2025, 46(19): 530967-530967. |
| [2] | 代定强, 周轩, 董雷霆, 孙侠生. 数字工程与数字孪生在航空疲劳与结构完整性领域的研究进展与展望[J]. 航空学报, 2025, 46(19): 531022-531022. |
| [3] | 李尚宇, 冯杭, 陈俊全, 陈彬, 梅丹. 一种数字孪生的设计架构和概念建模方法[J]. 航空学报, 2025, 46(19): 531118-531118. |
| [4] | 雷珺祺, 程月华, 姜斌, 徐骋, 徐贵力, 孙天宇. 面向舵回路故障的数字孪生建模及动态调整机制[J]. 航空学报, 2025, 46(19): 531273-531273. |
| [5] | 陈亮, 黄蕾, 顾宇轩, 郭聪, 林可欣, 管宇, 宋健. 基于飞行参数的结构关键部位载荷孪生技术[J]. 航空学报, 2025, 46(19): 531292-531292. |
| [6] | 顾宇轩, 郭聪, 黄蕾, 董一飞, 董宏达, 邓智伦. 数字孪生驱动的机群寿命精细化管理[J]. 航空学报, 2025, 46(19): 531290-531290. |
| [7] | 张音旋, 张起, 许镇勇, 孟琳书. 基于残差神经网络的飞机力学响应预测方法[J]. 航空学报, 2025, 46(19): 531295-531295. |
| [8] | 肖若瑶, 郑联语, 周健, 赵思如, 张洁茹, 陈育武. 面向筒段对接数字孪生的定位精度在线优化方法[J]. 航空学报, 2025, 46(19): 531978-531978. |
| [9] | 胡家亮, 吴江鹏, 霍思旭, 高一地, 郑华. 基于颤振试飞数字孪生扫频数据重构的模态参数估计[J]. 航空学报, 2025, 46(19): 531602-531602. |
| [10] | 王鹏飞, 曾丽芳, 邵雪明, 黎军. 基于预训练微调的机翼气动载荷多源数据融合建模方法[J]. 航空学报, 2025, 46(19): 532297-532297. |
| [11] | 王逸飞, 曹戈勇, 曹阳, 王晓军. 飞行器数字强度孪生中的不确定性技术[J]. 航空学报, 2025, 46(19): 532408-532408. |
| [12] | 陈亮, 孟凡星, 王成波, 张音旋, 孟琳书. 数字孪生技术在飞行器强度设计中的发展及应用[J]. 航空学报, 2025, 46(19): 532252-532252. |
| [13] | 卓然, 闫楚良. 飞机结构数字孪生的关键一环:多参数飞行实测[J]. 航空学报, 2025, 46(19): 532375-532375. |
| [14] | 林琳, 索世伟, 刘丹, 张音旋, 岳凌宇, 张思豪, 刘奕坤, 付松. 基于多尺度核构造的深度特征融合网络及其在机翼应力场数据填补中的应用[J]. 航空学报, 2025, 46(19): 532343-532343. |
| [15] | 田阔, 孙志勇, 李增聪. 面向结构静力试验监测的高精度数字孪生方法[J]. 航空学报, 2024, 45(7): 429134-429134. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学

