收稿日期:
2022-12-01
修回日期:
2023-02-01
接受日期:
2023-03-07
出版日期:
2023-10-15
发布日期:
2023-03-21
通讯作者:
罗阳军
E-mail:yangjunluo@hit.edu.cn
基金资助:
Jiaqi HE1, Weida WU1, Yangjun LUO2()
Received:
2022-12-01
Revised:
2023-02-01
Accepted:
2023-03-07
Online:
2023-10-15
Published:
2023-03-21
Contact:
Yangjun LUO
E-mail:yangjunluo@hit.edu.cn
Supported by:
摘要:
星载天线反射器形面精度对其电磁性能影响至关重要,基于压电作动器的形面主动控制方法是保障反射器在轨服役期间形面精度的一个有效手段。本文考虑反射器结构在轨期间的材料属性时变不确定性,结合数字孪生技术提出了一种反射器形面鲁棒性主动控制方法。首先,将材料属性在概率-凸集模型(P-CS)下统一量化,并基于贝叶斯理论和位移监测实现数据驱动的模型动态更新;其次,以反射器结构面外位移鲁棒性作为结构形面精度不确定性评价指标,建立作动器电压布局优化模型,并用空间场函数描述电压布局形式,实现大规模离散设计变量的降维映射。该动态更新布局优化模型可分解为一系列序列子优化问题,基于代理模型优化算法进行求解。最后,将本文方法应用于六边形反射器形面主动控制问题中,分别讨论了施加不同种电压约束的情况,数值算例验证了本算法的有效性和适用性。
中图分类号:
何佳琦, 吴伟达, 罗阳军. 基于P-CS模型与数字孪生的星载天线反射器形面鲁棒性控制方法[J]. 航空学报, 2023, 44(19): 328343-328343.
Jiaqi HE, Weida WU, Yangjun LUO. A robust shape control method for space-borne antenna reflectors based on P-CS uncertainty quantification model and digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 328343-328343.
1 | 宋祥帅, 谭述君, 高飞雄, 等. 星载天线反射器形面主动控制研究现状与展望[J]. 空间电子技术, 2022, 19(1): 1-12. |
SONG X S, TAN S J, GAO F X, et al. Research progresses and prospect of active shape control for space-borne antenna reflectors[J]. Space Electronic Technology, 2022, 19(1): 1-12 (in Chinese). | |
2 | TANAKA H. Surface error estimation and correction of a space antenna based on antenna gainanalyses[J]. Acta Astronautica, 2011, 68(7-8): 1062-1069. |
3 | SONG X S, TAN S J, WANG E M, et al. Active shape control of an antenna reflector using piezoelectric actuators[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(18-19): 2733-2747. |
4 | HAFTKA R T, ADELMAN H M. An analytical investigation of shape control of large space structures by applied temperatures[J]. AIAA Journal, 1985, 23(3): 450-457. |
5 | SONG X S, CHU W M, TAN S J, et al. Adaptive shape control for antenna reflectors based on feedback error learning algorithm[J]. AIAA Journal, 2020, 58(7): 3229-3240. |
6 | LU Y F, YUE H H, DENG Z Q, et al. Adaptive shape control for thermal deformation of membrane mirror with in-plane PVDF actuators[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 1-11. |
7 | XU X, LUO Y Z. Multi-objective shape control of prestressed structures with genetic algorithms[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222(8): 1139-1147. |
8 | SHAO S B, SONG S Y, XU M L, et al. Mechanically reconfigurable reflector for future smart space antenna application[J]. Smart Materials and Structures, 2018, 27(9): 095014. |
9 | HILL J, WANG K W, FANG H. Advances of surface control methodologies for flexible space reflectors[J]. Journal of Spacecraft and Rockets, 2013, 50(4): 816-828. |
10 | WANG Z W, LI T J, CAO Y Y. Active shape adjustment of cable net structures with PZT actuators[J]. Aerospace Science and Technology, 2013, 26(1): 160-168. |
11 | ZHANG S X, DU J L, DUAN B Y, et al. Integrated structural-electromagnetic shape control of cable mesh reflector antennas[J]. AIAA Journal, 2014, 53(5): 1395-1399. |
12 | 孟松鹤, 叶雨玫, 杨强, 等. 数字孪生及其在航空航天中的应用[J]. 航空学报, 2020, 41(9): 023615. |
MENG S H, YE Y M, YANG Q, et al. Digital twin and its aerospace applications[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 023615 (in Chinese). | |
13 | Cearley D W, Burke B, Searle S, et al. Top 10 strategic technology trends for 2018 [EB/OL]. (2017-10-03) [2023-03-21]. . |
14 | 董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3): 023981. |
DONG L T, ZHOU X, ZHAO F B, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 023981 (in Chinese). | |
15 | YU J S, SONG Y, TANG D Y, et al. A digital twin approach based on nonparametric Bayesian network for complex system health monitoring[J]. Journal of Manufacturing Systems, 2021, 58: 293-304. |
16 | LI C Z, MAHADEVAN S, LING Y, et al. Dynamic Bayesian network for aircraft wing health monitoring digital twin[J]. AIAA Journal, 2017, 55(3): 930-941. |
17 | ELISHAKOFF I. Essay on uncertainties in elastic and viscoelastic structures: From A. M. Freudenthal’s criticisms to modern convex modeling[J]. Computers & Structures, 1995, 56(6): 871-895. |
18 | JIANG C, HAN X, LU G Y, et al. Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(33-36): 2528-2546. |
19 | LIMBOURG P, DE ROCQUIGNY E. Uncertainty analysis using evidence theory - confronting level-1 and level-2 approaches with data availability and computational constraints[J]. Reliability Engineering & System Safety, 2010, 95(5): 550-564. |
20 | FAES M G R, DAUB M, MARELLI S, et al. Engineering analysis with probability boxes: A review on computational methods[J]. Structural Safety, 2021, 93: 102092. |
21 | 董玉革, 陈心昭, 赵显德, 等. 基于模糊事件概率理论的模糊可靠性分析通用方法[J]. 计算力学学报, 2005, 22(3): 281-286. |
DONG Y G, CHEN X Z, ZHAO X D, et al. A general approach for fuzzy reliability analysis based on the fuzzy probability theory[J]. Chinese Journal of Computational Mechanics, 2005, 22(3): 281-286 (in Chinese). | |
22 | LI J W, JIANG C. A novel imprecise stochastic process model for time-variant or dynamic uncertainty quantification[J]. Chinese Journal of Aeronautics, 2022, 35(9): 255-267. |
23 | PING M H, HAN X, JIANG C, et al. A time-variant uncertainty propagation analysis method based on a new technique for simulating non-Gaussian stochastic processes[J]. Mechanical Systems and Signal Processing, 2021, 150: 107299. |
24 | WANG L, WANG X J, CHEN X, et al. Time-variant reliability model and its measure index of structures based on a non-probabilistic interval process[J]. Acta Mechanica, 2015, 226(10): 3221-3241. |
25 | MENG Z, GUO L B, HAO P, et al. On the use of probabilistic and non-probabilistic super parametric hybrid models for time-variant reliability analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 386: 114113. |
26 | BISSIRI P G, HOLMES C C, WALKER S G. A general framework for updating belief distributions[J]. Journal of the Royal Statistical Society Series B, Statistical Methodology, 2016, 78(5): 1103-1130. |
27 | WANG R C. Analysis and improvement of combination rule in D-S theory[J]. Applied Mechanics and Materials, 2014, 556-562: 3930-3934. |
28 | PAN Y, ZHANG L M, LI Z W, et al. Improved fuzzy Bayesian network-based risk analysis with interval-valued fuzzy sets and D-S evidence theory[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(9): 2063-2077. |
29 | HE J Q, LUO Y J. A Bayesian updating method for non-probabilistic reliability assessment of structures with performance test data[J]. Computer Modeling in Engineering & Sciences, 2020, 125(2): 777-800. |
30 | 何佳琦, 贾晓璇, 吴伟达, 等. P-CS不确定性量化模型与其性能数据驱动更新方法[J]. 力学学报, 2022, 54(10): 2808-2824. |
HE J Q, JIA X X, WU W D, et al. P-CS uncertainty quantification model and its performance data-driven updating method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2808-2824 (in Chinese). | |
31 | SILVA G A DA, CARDOSO E L, BECK A T. Comparison of robust, reliability-based and non-probabilistic topology optimization under uncertain loads and stress constraints[J]. Probabilistic Engineering Mechanics, 2020, 59: 103039. |
32 | KANNO Y. On three concepts in robust design optimization: absolute robustness, relative robustness, and less variance[J]. Structural and Multidisciplinary Optimization, 2020, 62(2): 979-1000. |
33 | CHENG J, LIU Z Y, QIAN Y M, et al. Non-probabilistic robust equilibrium optimization of complex uncertain structures[J]. Journal of Mechanical Design, 2020, 142(2): 021405. |
34 | RIBEIRO L H M S, POGGETTO V F DAL, ARRUDA J R F. Robust optimization of attenuation bands of three-dimensional periodic frame structures[J]. Acta Mechanica, 2022, 233(2): 455-475. |
35 | ZHAN J J, LUO Y J. Robust topology optimization of hinge-free compliant mechanisms with material uncertainties based on a non-probabilistic field model[J]. Frontiers of Mechanical Engineering, 2019, 14(2): 201-212. |
36 | KANG Z, WU C L, LUO Y J, et al. Robust topology optimization of multi-material structures considering uncertain graded interface[J]. Composite Structures, 2019, 208: 395-406. |
37 | ZHANG S X, DUAN B Y. Integrated structural-electromagnetic optimization of cable mesh reflectors considering pattern degradation for random structural errors[J]. Structural and Multidisciplinary Optimization, 2020, 61(4): 1621-1635. |
38 | YUE X W, WEN Y C, HUNT J H, et al. Surrogate model-based control considering uncertainties for composite fuselage assembly[J]. Journal of Manufacturing Science and Engineering, 2018, 140(4): 041017. |
39 | LUO Y Q, WANG Z D, WEI G L, et al. Fuzzy-logic-based control, filtering, and fault detection for networked systems: A survey[J]. Mathematical Problems in Engineering, 2015, 2015: 1-11. |
40 | FENG Z Y, SHE J H, XU L. A brief review and insights into matrix inequalities for H∞ static-output-feedback control and a local optimal solution[J]. International Journal of Systems Science, 2019, 50(12): 2292-2305. |
41 | WANG L, XIONG C, WANG X J, et al. Hybrid time-variant reliability estimation for active control structures under aleatory and epistemic uncertainties[J]. Journal of Sound and Vibration, 2018, 419: 469-492. |
42 | ZHU L P, ELISHAKOFF I, STARNES J H. Derivation of multi-dimensional ellipsoidal convex model for experimental data[J]. Mathematical and Computer Modelling, 1996, 24(2): 103-114. |
43 | LI Y L, WANG X J, WANG C, et al. Non-probabilistic Bayesian update method for model validation[J]. Applied Mathematical Modelling, 2018, 58: 388-403. |
44 | SUN Y, ZHOU Y, KE Z, et al. Stiffener layout optimization framework by isogeometric analysis-based stiffness spreading method[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 390: 114348. |
45 | HAO P, LIU D C, ZHANG K P, et al. Intelligent layout design of curvilinearly stiffened panels via deep learning-based method[J]. Materials & Design, 2021, 197: 109180. |
46 | FERRARI F, SIGMUND O. Revisiting topology optimization with buckling constraints[J]. Structural and Multidisciplinary Optimization, 2019, 59(5): 1401-1415. |
47 | LUO Y J, ZHAN J J. Linear buckling topology optimization of reinforced thin-walled structures considering uncertain geometrical imperfections[J]. Structural and Multidisciplinary Optimization, 2020, 62(6): 3367-3382. |
48 | LUO Y J, BAO J W. A material-field series-expansion method for topology optimization of continuum structures[J]. Computers & Structures, 2019, 225: 106122. |
49 | LI C C, DER KIUREGHIAN A. Optimal discretization of random fields[J]. Journal of Engineering Mechanics, 1993, 119(6): 1136-1154. |
50 | ROSENBLATT M. Remarks on a multivariate transformation[J]. The Annals of Mathematical Statistics, 1952, 23(3): 470-472. |
51 | JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492. |
52 | Joseph VR, Hung Y. Orthogonal-maximin Latin hypercube designs[J]. Statistica Sinica, 2008, 18(1): 171-186. |
53 | SVANBERG K. The method of moving asymptotes—a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373. |
54 | STEEVES J, PELLEGRINO S. Ultra-thin highly deformable composite mirrors: AIAA-2013-1523[R]. Reston: AIAA, 2013. |
55 | LAN L, JIANG S D, ZHOU Y, et al. An experimental study on reflector wave-front error correction using PZT actuators[C]∥ SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. San Francisco: SPIE, 2016: 86-100. |
[1] | 田阔, 孙志勇, 李增聪. 面向结构静力试验监测的高精度数字孪生方法[J]. 航空学报, 2024, 45(7): 429134-429134. |
[2] | 黄维娜, 黎方娟, 祁宏斌. 航空发动机数字工程初步研究与发展思考[J]. 航空学报, 2024, 45(5): 529693-529693. |
[3] | 肖冰, 张海朝. 航天器姿态稳定强化学习鲁棒最优控制方法[J]. 航空学报, 2024, 45(1): 628890-628890. |
[4] | 郑新前, 王钧莹, 黄维娜, 伏宇, 程荣辉, 熊洪洋. 航空发动机不确定性设计体系探讨[J]. 航空学报, 2023, 44(7): 27099-027099. |
[5] | 王维民, 户东方. 旋转叶片动应力非接触测量方法研究综述[J]. 航空学报, 2023, 44(22): 28516-028516. |
[6] | 郭丞皓, 于劲松, 宋悦, 尹琦, 李佳璇. 基于数字孪生的飞机起落架健康管理技术[J]. 航空学报, 2023, 44(11): 227629-227629. |
[7] | 王芳丽, 刘凯, 潘微, 童明波. 民机结构绿色维修技术应用与发展[J]. 航空学报, 2023, 44(11): 25851-025851. |
[8] | 曹明, 王鹏, 左洪福, 曾海军, 孙见忠, 杨卫东, 魏芳, 陈雪峰. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ: 地面综合诊断、寿命管理和智能维护维修决策[J]. 航空学报, 2022, 43(9): 625574-625574. |
[9] | 岳彩旭, 张俊涛, 刘献礼, 陈志涛, Steven Y. LIANG, Lihui WANG. 薄壁件铣削过程加工变形研究进展[J]. 航空学报, 2022, 43(4): 525164-525164. |
[10] | 万兵, 苏析超, 郭放, 韩维, 梁勇. 不确定性工时下甲板作业的前摄性鲁棒调度[J]. 航空学报, 2022, 43(12): 325971-325971. |
[11] | 颜黎明, 赵冬冬, 焦宁飞. 基于鲁棒模型的航空交流感应电机预测转矩控制[J]. 航空学报, 2021, 42(9): 324700-324700. |
[12] | 董雷霆, 周轩, 赵福斌, 贺双新, 卢志远, 冯建民. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3): 23981-023981. |
[13] | 孟松鹤, 叶雨玫, 杨强, 黄震, 解维华. 数字孪生及其在航空航天中的应用[J]. 航空学报, 2020, 41(9): 23615-023615. |
[14] | 隋少春, 许艾明, 黎小华, 刘顺涛, 黄伟. 面向航空智能制造的DT与AI融合应用[J]. 航空学报, 2020, 41(7): 624173-624173. |
[15] | 张普, 薛惠锋, 高山. 基于分布式自适应的多智能体容错一致性控制[J]. 航空学报, 2020, 41(3): 323539-323539. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学