1 |
LÖHNER R, CEBRAL J R, CAMELLI F F, et al. Adaptive embedded/immersed unstructured grid techniques[J]. Archives of Computational Methods in Engineering, 2007, 14(3): 279-301.
|
2 |
LÖHNER R, BAUM J D, MESTREAU E, et al. Adaptive embedded unstructured grid methods[J]. International Journal for Numerical Methods in Engineering, 2004, 60(3): 641-660.
|
3 |
PESKIN C S. Numerical analysis of blood flow in the heart[J]. Journal of Computational Physics, 1977, 25(3): 220-252.
|
4 |
HUANG W X, TIAN F B. Recent trends and progress in the immersed boundary method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(23-24): 7617-7636.
|
5 |
CUI Z, YANG Z X, JIANG H Z, et al. A sharp-interface immersed boundary method for simulating incompressible flows with arbitrarily deforming smooth boundaries[J]. International Journal of Computational Methods, 2018, 15(1): 1750080.
|
6 |
SCHNEIDERS L, GÜNTHER C, MEINKE M, et al. An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows[J]. Journal of Computational Physics, 2016, 311: 62-86.
|
7 |
MURALIDHARAN B, MENON S. Simulation of moving boundaries interacting with compressible reacting flows using a second-order adaptive Cartesian cut-cell method[J]. Journal of Computational Physics, 2018, 357: 230-262.
|
8 |
EHSAN KHALILI M, LARSSON M, MÜLLER B. Immersed boundary method for viscous compressible flows around moving bodies[J]. Computers & Fluids, 2018, 170: 77-92.
|
9 |
BRAHMACHARY S, NATARAJAN G, KULKARNI V, et al. A sharp-interface immersed boundary method for high-speed compressible flows[J] Immersed Boundary Method Development and Applications, 2020: 251-275.
|
10 |
BLAZEK J. Principles of grid generation[M]∥Computational Fluid Dynamics: Principles and Applications. Amsterdam: Elsevier, 2001: 353-392.
|
11 |
PU T, ZHOU C. An immersed boundary/wall modeling method for RANS simulation of compressible turbulent flows[J]. International Journal for Numerical Methods in Fluids, 2018, 87(5): 217-238.
|
12 |
CABOT W, MOIN P. Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow[J]. Flow, Turbulence and Combustion, 2000, 63(1): 269-291.
|
13 |
杜银杰, 舒昌, 杨鲤铭, 等. 扩散界面浸入边界法结合壁面模型在湍流模拟中的应用[J]. 航空学报, 2021, 42(): 54-64.
|
|
DU Y J, SHU C, YANG L M, et al. Wall model based diffuse-interface immersed boundary method and its application in turbulent flows[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(Sup 1): 54-64 (in Chinese).
|
14 |
李旭, 周洲, 薛臣. 一种适合迭代求解的反馈力浸入边界法[J]. 航空学报, 2020, 41(9): 123712.
|
|
LI X, ZHOU Z, XUE C. Feedback forcing immersed boundary method for iterative calculations[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 123712 (in Chinese).
|
15 |
胡国暾, 杜林, 孙晓峰. 基于浸入式边界法的振荡转子叶片数值模拟[J]. 航空学报, 2014, 35(8): 2112-2125.
|
|
HU G, DU L, SUN X F. An immersed boundary method for simulating oscillating rotor blades[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2112-2125 (in Chinese).
|
16 |
陈浩, 华如豪, 袁先旭, 等. 基于自适应笛卡尔网格的飞翼布局流动模拟[J]. 航空学报, 2022, 43(8): 125674.
|
|
CHEN H, HUA R H, YUAN X X, et al. Simulation of flow around fly-wing configuration based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125674 (in Chinese).
|
17 |
唐志共, 陈浩, 毕林, 等. 自适应笛卡尔网格超声速黏性流动数值模拟[J]. 航空学报, 2018, 39(5): 121697.
|
|
TANG Z G, CHEN H, BI L, et al. Numerical simulation of supersonic viscous flow based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121697 (in Chinese).
|
18 |
XU Y C, LIU X F. An immersed boundary method with y +-adaptive wall function for smooth wall shear[J]. International Journal for Numerical Methods in Fluids, 2021, 93(6): 1929-1946.
|
19 |
KNOPP T, ALRUTZ T, SCHWAMBORN D. A grid and flow adaptive wall-function method for RANS turbulence modelling[J]. Journal of Computational Physics, 2006, 220(1): 19-40.
|
20 |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
|
21 |
SPALDING D B. A single formula for the “law of the wall”[J]. Journal of Applied Mechanics, 1961, 28(3): 455-458.
|
22 |
HOLZMANN T. Mathematics, numerics, derivations and OpenFOAM[D]. Loeben: Holzmann CFD, 2016.
|
23 |
KALITZIN G, MEDIC G, IACCARINO G, et al. Near-wall behavior of RANS turbulence models and implications for wall functions[J]. Journal of Computational Physics, 2005, 204(1): 265-291.
|
24 |
KALITZIN G, IACCARINO G. Toward immersed boundary simulation of high Reynolds number flows[R]. 2003.
|
25 |
LEE J D, RUFFIN S. Development of a turbulent wall-function based viscous Cartesian-grid methodology[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007: 1326.
|
26 |
Buice 2D diffuser[EB/OL]. (2021-02-10). .
|
27 |
OBI S, AOKI K, MASUDA S. Experimental and computational study of turbulent separating flow in an asymmetric plane diffuser[C]∥9th International Symposium on Turbulent Shear Flows. Kyoto: Shinnosuki Obi, 1993: 305-312.
|
28 |
YE H X, WAN D C. Benchmark computations for flows around a stationary cylinder with high Reynolds numbers by RANS-overset grid approach[J]. Applied Ocean Research, 2017, 65: 315-326.
|
29 |
YEON S M, YANG J M, STERN F. Large-eddy simulation of the flow past a circular cylinder at sub- to super-critical Reynolds numbers[J]. Applied Ocean Research, 2016, 59: 663-675.
|
30 |
NGUYEN V B, DO Q V, PHAM V S. An OpenFOAM solver for multiphase and turbulent flow[J]. Physics of Fluids, 2020, 32(4): 043303.
|
31 |
SCHEWE G. On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers[J]. Journal of Fluid Mechanics, 1983, 133: 265-285.
|
32 |
TRIAS F X, GOROBETS A, OLIVA A. Turbulent flow around a square cylinder at Reynolds number 22, 000: A DNS study[J]. Computers & Fluids, 2015, 123: 87-98.
|
33 |
SOHANKAR A, DAVIDSON L, NORBERG C. Large eddy simulation of flow past a square cylinder: Comparison of different subgrid scale models[J]. Journal of Fluids Engineering, 2000, 122(1): 39-47.
|
34 |
NORBERG C. Flow around rectangular cylinders: Pressure forces and wake frequencies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49(1-3): 187-196.
|