1 |
FOUGHNER J T. Viking Mars mission support investigations in the Langley transonic dynamics tunnel: TM-80234[R]. Washington,D.C.: NASA, 1980.
|
2 |
FALLON II E J. System design overview of the Mars Pathfinder parachute decelerator subsystem: AIAA-1997- 1511[R]. Reston: AIAA, 1997.
|
3 |
WITKOWSKI A. Mars Pathfinder parachute system performance: AIAA-1999-1701[R]. Reston: AIAA, 1999.
|
4 |
WITKOWSKI A, BRUNO R. Mars exploration rover parachute decelerator system program overview: AIAA-2003-2100[R]. Reston: AIAA, 2003.
|
5 |
WITKOWSKI A, KANDIS M, BRUNO R, et al. Mars exploration rover parachute system performance: AIAA-2005-1605[R]. Reston: AIAA, 2005.
|
6 |
PRINCE J L, DESAI P N, QUEEN E M, et al. Mars phoenix entry, descent, and landing simulation design and modeling analysis[J]. Journal of Spacecraft and Rockets, 2011, 48(5): 756-764.
|
7 |
WITKOWSKI A, KANDIS M, ADAMS D. Mars scout phoenix parachute system performance: AIAA-2009-2907[R]. Reston: AIAA, 2009.
|
8 |
SENGUPTA A, STELTZNER A, WITKOWSKI A, et al. Findings from the supersonic qualification program of the Mars science laboratory parachute system: AIAA-2009-2900[R]. Reston: AIAA, 2009.
|
9 |
CRUZ J R, WAY D, SHIDNER J, et al. Parachute models used in the Mars science laboratory entry, descent, and landing simulation: AIAA-2013-1276[R]. Reston: AIAA, 2013.
|
10 |
WITKOWSKI A, KANDIS M, ADAMS D S. Mars science laboratory parachute system performance: AIAA-2013-1277[R]. Reston: AIAA, 2013.
|
11 |
王利荣. 降落伞理论与应用[M]. 北京: 宇航出版社, 1997.
|
|
WANG L R. Parachute theory and application[M]. Beijing: China Astronautics Press, 1997 (in Chinese).
|
12 |
于莹潇, 田佳林. 火星探测器降落伞系统综述[J]. 航天返回与遥感, 2007, 28(4): 12-16.
|
|
YU Y X, TIAN J L. Mars explorer’s parachute system overview[J]. Spacecraft Recovery & Remote Sensing, 2007, 28(4): 12-16 (in Chinese).
|
13 |
贾贺, 包进进, 荣伟. 设计参数及大气参数对降落伞充气性能的影响[J]. 航天返回与遥感, 2020, 41(3): 28-36.
|
|
JIA H, BAO J J, RONG W. The design and atmospheric parameters influences on parachute inflation performance[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(3): 28-36 (in Chinese).
|
14 |
BARBER J, JOHARI H. Experimental investigation of personnel parachute designs using scale model wind tunnel testing: AIAA-2001-2074[R]. Reston: AIAA, 2001.
|
15 |
SHANNON M P. Experimental analysis of the pressure distribution on a 35-foot personnel parachute: AIAA- 2001-2008[R]. Reston: AIAA, 2001.
|
16 |
DESABRAIS K J, JOHARI H. The flow in the near wake of an inflating parachute canopy: AIAA-2001-2009[R]. Reston: AIAA, 2001.
|
17 |
DESABRAIS K J. Velocity field measurements in the near wake of a parachute canopy[D]. Worcester: Worcester Polytechnic Institute, 2002.
|
18 |
STEIN K. Parachute fluid-structure interactions: 3-D computation[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(3-4): 373-386.
|
19 |
高兴龙, 张青斌, 丰志伟, 等. 集成火星进入弹道的开伞过程动力学特性研究[J]. 宇航学报, 2016, 37(6): 664-670.
|
|
GAO X L, ZHANG Q B, FENG Z W, et al. Study on dynamic characteristic of opening process integrating with Mars entry trajectory[J]. Journal of Astronautics, 2016, 37(6): 664-670 (in Chinese).
|
20 |
SCHOENENBERGER M, QUEEN E M, CRUZ J R. Parachute aerodynamics from video data: AIAA-2005- 1633[R]. Reston: AIAA, 2005.
|
21 |
张征宇, 黄叙辉, 尹疆, 等. 风洞试验中的视频测量技术现状与应用综述[J]. 空气动力学学报, 2016, 34(1): 70-79.
|
|
ZHANG Z Y, HUANG X H, YIN J, et al. Research status and application of videogrammetric measurement techniques for wind tunnel testing[J]. Acta Aerodynamica Sinica, 2016, 34(1): 70-79 (in Chinese).
|
22 |
宋晋, 马军, 蒋敏, 等. 双目视觉系统在风洞伞摆角测量中的研究与应用[J]. 计算机测量与控制, 2012, 20(8): 2042-2044.
|
|
SONG J, MA J, JIANG M, et al. Research and application of parachute swing angle in wind tunnel test based on stereo vision measurement system[J]. Computer Measurement & Control, 2012, 20(8): 2042-2044 (in Chinese).
|
23 |
杨贤文, 郝东, 易国庆, 等. 火星探测降落伞模型高速风洞变迎角试验技术[J]. 宇航学报, 2019, 40(12): 1461-1467.
|
|
YANG X W, HAO D, YI G Q, et al. Variable angle of attack test technique of Mars exploration parachute model in high speed wind tunnel[J]. Journal of Astronautics, 2019, 40(12): 1461-1467 (in Chinese).
|
24 |
LATEGAHN H, DERENDARZ W, GRAF T, et al. Occupancy grid computation from dense stereo and sparse structure and motion points for automotive applications[C]∥2010 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE Press, 2010.
|
25 |
KRYS D, NAJJARAN H. INS assisted vision-based localization in unstructured environments[C]∥2008 IEEE International Conference on Systems, Man and Cybernetics. Piscataway: IEEE Press, 2008.
|
26 |
李建, 李小民, 钱克昌, 等. 基于双目视觉和惯性器件的微小型无人机运动状态估计方法[J]. 航空学报, 2011, 32(12): 2310-2317.
|
|
LI J, LI X M, QIAN K C, et al. Motion state estimation for micro UAV using inertial sensor and stereo camera pair[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12): 2310-2317 (in Chinese).
|
27 |
PREDMORE C R. Bundle adjustment of multi-position measurements using the Mahalanobis distance[J]. Precision Engineering, 2010, 34(1): 113-123.
|
28 |
DONOHO D L. For most large underdetermined systems of equations, the minimal l1-norm near-solution approx-imates the sparsest near-solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(7): 907-934.
|
29 |
YANG J C, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2010, 19(11): 2861-2873.
|
30 |
YANG J C, WRIGHT J, HUANG T, et al. Image super-resolution as sparse representation of raw image patches[C]∥2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2008.
|
31 |
ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]∥ Curves and Surfaces. Haifa: Israel Institute of Technology, 2012.
|
32 |
YANG J C, WANG Z W, LIN Z, et al. Coupled dictionary training for image super-resolution[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2012, 21(8): 3467-3478.
|
33 |
LIU Y, SUN Z D. EKF-based adaptive sensor scheduling for target tracking[C]∥2008 International Symposium on Information Science and Engineering. Piscataway: IEEE Press, 2008.
|
34 |
孙博文, 王大轶, 王炯琦, 等. 基于序列图像的航天器自主导航降维滤波方法[J]. 航空学报, 2021, 42(4): 524971.
|
|
SUN B W, WANG D Y, WANG J Q, et al. Filter method for dimension reduction in spacecraft autonomous navigation based on sequence image[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524971 (in Chinese).
|
35 |
RAJENDRAN V, OBRACZKA K, GARCIA-LUNA-ACEVES J J. Energy-efficient, collision-free medium access control for wireless sensor networks[J]. Wireless Networks, 2006, 12(1): 63-78.
|
36 |
王楷, 陈统, 徐世杰. 基于双视线测量的相对导航方法[J]. 航空学报, 2011, 32(6): 1084-1091.
|
|
WANG K, CHEN T, XU S J. A method of double line-of-sight measurement relative navigation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1084-1091 (in Chinese).
|
37 |
YE J Z, ZHAO L, LUO W F. Performances of localization algorithms in a prototype WSN system[J]. Advanced Materials Research, 2012, 457-458: 723-727.
|