| 1 |
XUE X P, WEN C Y. Review of unsteady aerodynamics of supersonic parachutes[J]. Progress in Aerospace Sciences, 2021, 125: 100728.
|
| 2 |
CRUZ J R, WAY D, SHIDNER J, et al. Parachute models used in the Mars science laboratory entry, descent, and landing simulation[C]∥AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston: AIAA, 2013: 1276-1303.
|
| 3 |
CRUZ J R, WAY D, SHIDNER J, et al. Reconstruction of the Mars science laboratory parachute performance and comparison to the descent simulation[C]∥Proceedings of the AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston: AIAA, 2013: 1185-1196.
|
| 4 |
SENGUPTA A, WITKOWSKI A, ROWAN J, et al. Overview of the Mars science laboratory parachute decelerator system[C]∥19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2007: 2007-2578.
|
| 5 |
于莹潇, 田佳林. 火星探测器降落伞系统综述[J]. 航天返回与遥感, 2007, 28(4): 12-16.
|
|
YU Y X, TIAN J L. Mars explorer’s parachute system overview[J]. Spacecraft Recovery & Remote Sensing, 2007, 28(4): 12-16 (in Chinese).
|
| 6 |
JIANG L L, JIA H, XU X, et al. Numerical study on aerodynamic performance of Mars parachute models with geometric porosities[J]. Space: Science and Technology, 2022, 2022: 1-15.
|
| 7 |
JIANG L L, JIA H, XU X, et al. Effect of different geometric porosities on aerodynamic characteristics of supersonic parachutes[J]. Space: Science & Technology, 2023, 3: 0062.
|
| 8 |
徐欣,贾贺,陈雅倩,等.织物透气性对火星用降落伞气动特性影响机理研究[J]. 航空学报, 2022, 43(12): 126289.
|
|
XU X, JIA H, CHEN Y Q, et al. Influence mechanism of fabric permeability of canopy on aerodynamic performance of Mars parachute[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126289 (in Chinese).
|
| 9 |
SHEN C. Flow field characteristics around bluff parachute canopies[D]. Leicester: University of Leicester, 1987.
|
| 10 |
GREATHOUSE J, SCHWING A. Study of geometric porosity on static stability and drag using computational fluid dynamics for rigid parachute shapes[C]∥Proceedings of the 23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2015: 500-521.
|
| 11 |
GOGLIA M J, LAVIER H W S, BROWN C D. Air permeability of parachute cloths[J]. Textile Research Journal, 1955, 25(4): 296-313.
|
| 12 |
TAGUCHI M, SEMBA N, MORI K. Effects of flexibility and gas permeability of fabric to supersonic performance of flexible parachute[C]∥Proceedings of the 23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2015: 543-549.
|
| 13 |
XU X, XUE X P, ZOU T Q, et al. Numerical study on aerodynamic characteristics of Mars parachute systems with different combinations of fabric permeability and geometric porosity[J]. Aerospace Science and Technology, 2024, 153: 109449.
|
| 14 |
ZOU T Q, JIA H, RONG W, et al. Numerical study on the influence of fabric permeability on the inflation process and aerodynamic characteristics of disk-gap-band parachute[J]. Aerospace Science and Technology, 2024, 150: 108856.
|
| 15 |
SONNEVELDT B S, CLARK I G, O’FARRELL C. Summary of the advanced supersonic parachute inflation research experiments (ASPIRE) sounding rocket tests with a disk-gap-band parachute[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
|
| 16 |
KANDIS M, WITKOWSKI A. Comparison of Mars and earth high altitude supersonic disk-gap-band parachute system performance[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
|
| 17 |
CLARK I G, GALLON J C, WITKOWSKI A. Parachute decelerator system performance during the low density supersonic decelerator program’s first supersonic flight dynamics test[C]∥23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2015: 471-499.
|
| 18 |
姜璐璐. 火星用超声速盘帆伞系统透气性影响及气动特性数值研究[D]. 长沙: 中南大学, 2021.
|
|
JIANG L L. Numerical study on permeability effect and aerodynamic characteristics of supersonic disksail parachute system for Mars[D]. Changsha: Central South University, 2021 (in Chinese).
|
| 19 |
夏元清. 火星探测器进入、下降与着陆过程的导航、制导与控制—“恐怖”七分钟[M]. 北京: 科学出版社, 2017.
|
|
XIA Y Q. Navigation, guidance and control of the Mars rover during entry, descent and landing - seven minutes of terror[M]. Beijing: Science Press, 2017 (in Chinese) .
|
| 20 |
HALL N. Mars atmosphere model [EB/OL]. (2021-05-13) [2021-07-27]. .
|
| 21 |
连亮, 王中阳, 张红英, 等. 基于ALE方法的群伞稳降阶段的数值模拟[J]. 航天返回与遥感, 2014, 35(1): 21-28.
|
|
LIAN L, WANG Z Y, ZHANG H Y, et al. Numerical simulation of cluster parachute system during steady-state descent phase based on ALE method[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(1): 21-28 (in Chinese).
|
| 22 |
ADAMS D, RIVELLINI T. Mars science laboratory’s parachute qualification approach[C]∥20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009.
|
| 23 |
HOU X Y, HU J, YU Y. Numerical study on ring slot parachute finite mass inflation process and wake recontact phenomenon[J]. Aerospace Science and Technology, 2022, 128: 107763.
|
| 24 |
ZHANG S Y, YU L, WU Z H, et al. Numerical investigation of ram-air parachutes inflation with fluid-structure interaction method in wind environments[J]. Aerospace Science and Technology, 2021, 109: 106400.
|
| 25 |
包文龙, 贾贺, 薛晓鹏, 等. 开 “窗” 结构对环帆伞开伞过程影响[J]. 航空学报, 2023, 44(5): 226936.
|
|
BAO W L, JIA H, XUE X P, et al. Influence of ‘windows’ structure on inflation process of ringsail parachute[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 226936 (in Chinese).
|
| 26 |
XUE X P, KOYAMA H, NAKAMURA Y, et al. Effects of suspension line on flow field around a supersonic parachute[J]. Aerospace Science and Technology, 2015, 43: 63-70.
|
| 27 |
XUE X P, NAKAMURA Y, MORI K, et al. Numerical investigation of effects of angle-of-attack on a parachute-like two-body system[J]. Aerospace Science and Technology, 2017, 69: 370-386.
|
| 28 |
FAN J H, HAO J A, WEN C Y, et al. Numerical investigation of supersonic flow over a parachute-like configuration including turbulent flow effects[J]. Aerospace Science and Technology, 2022, 121: 107330.
|
| 29 |
贾贺, 邹天琪, 荣伟,等.不同行星大气下直径比对降落伞气动特性的影响研究[J]. 航天返回与遥感, 2023, 44(1): 70-83.
|
|
JIA H, ZOU T Q, RONG W, et al. Influence of diameter ratio on the aerodynamic performance of parachute system under different atmospheric conditions[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(1): 70-83 (in Chinese) .
|
| 30 |
杨雪, 余莉, 李允伟, 等. 环帆伞稳降阶段织物透气性影响数值模拟[J]. 空气动力学学报, 2015, 33(5): 714-719.
|
|
YANG X, YU L, LI Y W, et al. Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage[J]. Acta Aerodynamica Sinica, 2015, 33(5): 714-719 (in Chinese).
|
| 31 |
宁雷鸣, 张红英, 童明波. 一种伞衣织物透气性快速预测算法[J]. 航天返回与遥感, 2016, 37(5): 10-18.
|
|
NING L M, ZHANG H Y, TONG M B. A fast permeability estimation method for parachute fabric[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(5): 10-18 (in Chinese).
|
| 32 |
WANG J, AQUELET N, TUTT B, et al. Porous euler-lagrange coupling: application to parachute dynamics[C]∥9th International LS-DYNA Users Conference. Detroit: Environmental Engineering Science, 2006: 1-12.
|
| 33 |
WITKOWSKI A, KANDIS M, SENGUPTA A, et al. Comparison of subscale versus full-scale wind tunnel tests of MSL disk gap band parachutes[C]∥Proceedings of the 20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009.
|
| 34 |
CRUZ J R, O’FARRELL C, HENNINGS E, et al. Permeability of two parachute fabrics-measurements, modeling, and application[C]∥Proceedings of the 24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2017: 605-631.
|
| 35 |
CRUZ J R, SNYDER M L. Estimates for the aerodynamic coefficients of ringsail and disk-gap-band parachutes operating on Mars[C]∥24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston, Virginia: AIAA, 2017: 1-28.
|
| 36 |
YU L, CHENG H, ZHAN Y N, et al. Study of parachute inflation process using fluid-structure interaction method[J]. Chinese Journal of Aeronautics, 2014, 27(2): 272-279.
|
| 37 |
徐欣. 超声速火星降落伞织物透气性影响机理及其气动性能研究[D]. 长沙: 中南大学, 2022.
|
|
XU X. Study on influence mechanism and aerodynamic performance of fabric permeability of supersonic Mars parachute[D]. Changsha: Central South University, 2022 (in Chinese).
|