[1] 张东军, 陈世伟. 无人机的发展及在交通管理领域应用的综述[J]. 科技广场, 2019(4): 84-90. ZHANG D J, CHEN S W. Overview of UAV development and its application in traffic management[J]. Science Mosaic, 2019(4): 84-90 (in Chinese). [2] 白玉. 四旋翼无人机的应用与发展综述[J]. 广西农业机械化, 2020(2): 7, 9. BAI Y. Overview of application and development of four-rotor UAV[J]. Guang Xi Agricultural Mechanization, 2020(2): 7, 9 (in Chinese). [3] 覃洪战. 对无人机反制系统干扰的排查及思考[J]. 中国无线电, 2021(8): 61-63. QIN H Z. Investigation and study on radio anti-drone systems[J]. China Radio, 2021(8): 61-63 (in Chinese). [4] 程擎, 伍瀚宇, 吉鹏, 等. 民用无人机反制技术及应用场景分析[J]. 电讯技术, 2022, 62(3): 389-398. CHENG Q, WU H Y, JI P, et al. Civilian UAV countermeasures and application scene analysis[J]. Telecommunication Engineering, 2022, 62(3): 389-398 (in Chinese). [5] XIAO K, ZHAO J Y, HE Y H, et al. Abnormal behavior detection scheme of UAV using recurrent neural networks[J]. IEEE Access, 2019, 7: 110293-110305. [6] 吴奇, 储银雪. 基于深度学习的航空器异常飞行状态识别[J]. 民用飞机设计与研究, 2017(3): 68-78, 4. WU Q, CHU Y X. Abnormal flight states of aircraft identification based on deep learning method[J]. Civil Aircraft Design & Research, 2017(3): 68-78, 4 (in Chinese). [7] 张余, 葛飞. 基于航迹数据的飞行状态识别方法研究[J]. 航空计算技术, 2017, 47(6): 45-48, 51. ZHANG Y, GE F. Research on flight state recognition method based on track data[J]. Aeronautical Computing Technique, 2017, 47(6): 45-48, 51 (in Chinese). [8] 潘新龙, 王海鹏, 何友, 等. 基于多维航迹特征的异常行为检测方法[J]. 航空学报, 2017, 38(4): 320442. PAN X L, WANG H P, HE Y, et al. Anomalous behavior detection method based on multidimensional trajectory characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4): 320442 (in Chinese). [9] MEDEL J R, SAVAKIS A. Anomaly detection in video using predictive convolutional long short-term memory networks[DB/OL]. arXiv preprint: 1612.00390, 2016. [10] 祝彦森. 基于改进iForest的学生异常行为检测及分析系统研究[D]. 南京: 南京信息工程大学, 2019. ZHU Y S. Research on student anomaly behavior detection and analysis system based on improved iForest[D]. Nanjing: Nanjing University of Information Science & Technology, 2019 (in Chinese). [11] 任家东, 刘新倩, 王倩, 等. 基于KNN离群点检测和随机森林的多层入侵检测方法[J]. 计算机研究与发展, 2019, 56(3): 566-575. REN J D, LIU X Q, WANG Q, et al. An multi-level intrusion detection method based on KNN outlier detection and random forests[J]. Journal of Computer Research and Development, 2019, 56(3): 566-575 (in Chinese). [12] 王诚, 狄萱. 孤立森林算法研究及并行化实现[J]. 计算机技术与发展, 2021, 31(6): 13-18. WANG C, DI X. Research and parallelization of isolation forest algorithm[J]. Computer Technology and Development, 2021, 31(6): 13-18 (in Chinese). [13] MADHUKAR RAO G, RAMESH D. A hybrid and improved isolation forest algorithm for anomaly detection[C]//Proceedings of International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications, 2021. [14] 陈婧, 徐佳琦, 李心玥, 等. 无监督机器学习异常检测技术在智能监控领域的应用展望[J]. 中国金融电脑, 2021(2): 81-86. CHEN J, XU J Q, LI X Y, et al. Application and prospect of unsupervised machine learning anomaly detection technology in intelligent monitoring field[J]. Financial Computer of China, 2021(2): 81-86 (in Chinese). [15] TANG B, HE H B. A local density-based approach for outlier detection[J]. Neurocomputing, 2017, 241:171-180. [16] 刘伟博, 白鲲. 基于神经网络的运动视频图像分类和识别研究[J]. 现代电子技术, 2021, 44(20): 163-167. LIU W B, BAI K. Research on motion video image classification and recognition based on neural network[J]. Modern Electronics Technique, 2021, 44(20): 163-167 (in Chinese). [17] 陈波冯, 李靖东, 卢兴见, 等. 基于深度学习的图异常检测技术综述[J]. 计算机研究与发展, 2021, 58(7):1436-1455. CHEN B F, LI J D, LU X J, et al. Survey of deep learning based graph anomaly detection methods[J]. Journal of Computer Research and Development, 2021,58(7): 1436-1455 (in Chinese). [18] LI Y C, ZHOU R G, XU R Q, et al. A quantum deep convolutional neural network for image recognition[J]. Quantum Science and Technology, 2020, 5(4): 044003. [19] 季长清, 高志勇, 秦静, 等. 基于卷积神经网络的图像分类算法综述[J]. 计算机应用, 2022, 42(4): 1044-1049. JI C Q, GAO Z Y, QIN J, et al. Review of image classification algorithms based on convolutional neural network[J]. Journal of Computer Applications, 2022, 42(4): 1044-1049 (in Chinese). [20] 王泽伟, 高丙朋. 基于时空融合卷积神经网络的异常行为识别[J]. 计算机工程与设计, 2020, 41(7): 2052-2056. WANG Z W, GAO B P. Spatio-temporal fusion convolutional neural network for abnormal behavior recognition[J]. Computer Engineering and Design, 2020, 41(7): 2052-2056 (in Chinese). [21] 陈兴蜀, 金逸灵, 王玉龙, 等. 基于长短期记忆神经网络的容器内进程异常行为检测[J]. 电子学报, 2021, 49(1): 149-156. CHEN X S, JIN Y L, WANG Y L, et al. Anomaly detection of processes behavior in container based on LSTM neural network[J]. Acta Electronica Sinica, 2021, 49(1): 149-156 (in Chinese). [22] 薛宏伟, 刘赢, 庄伟超, 等. 车联网环境下基于Stacking集成学习的车辆异常行为检测方法[J]. 汽车工程, 2021, 43(4): 501-508, 536. XUE H W, LIU Y, ZHUANG W C, et al. A detection method of vehicular abnormal behaviors in V2X environment based on stacking ensemble learning[J]. Automotive Engineering, 2021, 43(4): 501-508, 536 (in Chinese). [23] 王鹏宇, 程郁凡, 徐昊, 等. 基于卷积神经网络联合多域特征提取的干扰识别算法[J/OL]. 信号处理,2021:1-12[2021-10-31]. WANG P Y, CHENG Y F, XU H, et al. Jamming classification using convolutional neural network based joint multi-domain feature extraction[J/OL]. Journal of Signal Processing,2021:1-12[2021-10-31](in Chinese). |