收稿日期:
2021-11-24
修回日期:
2021-12-14
接受日期:
2022-01-05
出版日期:
2023-01-25
发布日期:
2022-02-17
通讯作者:
陈勇
E-mail:chenyong@comac.cc
Yong CHEN1,2(), Kelin ZHONG, Yue LUO2, Miao WANG2
Received:
2021-11-24
Revised:
2021-12-14
Accepted:
2022-01-05
Online:
2023-01-25
Published:
2022-02-17
Contact:
Yong CHEN
E-mail:chenyong@comac.cc
摘要:
支线航空作为公共运输航空的一个重要组成部分,随着市场需求的激增和国家政策的扶持,即将进入高速发展期。支线客机作为支线航空市场中的核心技术产品,不仅是打开全球支线飞机市场的钥匙,更是体现大国经济和科技实力的重要名片。基于支线客机的发展历程,深刻剖析了支线客机的任务使命,对支线客机总体气动、动力、机载系统这3方面的关键技术进行了详细阐述,并结合商用飞机的发展,讨论了支线客机的技术发展方向;最后基于未来发展需求,提出了基于自动、自主和智能化的支线客机任务系统概念。
中图分类号:
陈勇, 钟科林, 罗悦, 王淼. 支线客机关键技术与发展方向[J]. 航空学报, 2023, 44(2): 26697.
Yong CHEN, Kelin ZHONG, Yue LUO, Miao WANG. Key technology and future development of regional airliner[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 26697.
表 2
支线客机任务系统支持模式
智能等级 | 增强能力 | 任务需求 | 任务运行过程 |
---|---|---|---|
思考 (Think) | 自适应飞行推理 | 构建任务理解或任务的概念,包括飞行计划、任务能力和运行条件标准,建立目标、环境、结果自适应推理过程 | 基于飞行任务能力、作用域和结果知识进行推理,即针对飞行计划、任务能力和运行条件,建立空域环境、任务需求和任务结果推理过程,对预期行为做出合理的预测 |
观察 (Look) | 增强型态势感知 | 建立任务目标、能力和结果态势感知,支持任务系统智能理解、推理和归纳 | 建立面向飞行计划要求、飞行环境条件、系统能力的态势感知组织,支持任务目标组织、任务结果预测和任务状态管理 |
协同 (Talk) | 人机系统互动能力与效率 | 构建基于任务需求和环境约束的自动系统处理过程与人工智能处理过程综合的人机协同决策过程 | 针对飞行计划和飞行环境,依据系统状态和知识能力,提供自动处理程序和系统推理结果,建立飞行员与任务系统的协同过程,形成确定的飞行结果置信区域,支持飞行员/地面操作员决策 |
组织 (Move) | 任务组织、条件推理与状态归纳 | 基于飞行任务计划、任务运行环境和任务预期结果的组织、推理和归纳过程 | 根据任务计划运行目标,依据任务运行环境条件,针对系统能力构成,分析系统组织和运行的缺陷和不足;3A系统提供条件推理和状态归纳,形成有效置信区域的任务运行、能力和结果组织 |
运行 (Work) | 任务组织、条件推理与状态归纳 | 飞机可以近距离观察障碍物,与之进行智能化互动,根据语义指示或本机主动组织和规避。 | 基于任务系统智能化等级,提供任务运行过程目标、条件和能力,支持任务运行过程动态组织和优化,建立基于不同智能化等级的任务自主运行管理模式 |
1 | 陈勇, 王飞, 黄二利, 等. 支线飞机设计流程与关键技术管理[M]. 上海: 上海交通大学出版社, 2017: 17-19. |
CHEN Y, WANG F, HUANG E L, et al. Design flow and key technology management of regional aircraft[M]. Shanghai: Shanghai Jiao Tong University Press, 2017: 17-19 (in Chinese). | |
2 | 曲小. 支线飞机的“江湖”[J]. 大飞机, 2020(8): 34-40. |
QU X. The “jianghu” of regional aircraft[J]. Jetliner, 2020(8): 34-40 (in Chinese). | |
3 | 易安. 中国支线航空运输市场的现状与发展机遇[J]. 综合运输, 2009, 31(3): 63-69. |
YI A. Present situation and development opportunities of regional air transport market in China[J]. Comprehensive Transportation, 2009, 31(3): 63-69 (in Chinese). | |
4 | 林文进, 任和. 支线飞机替换战略的经济性分析[J]. 民用飞机设计与研究, 2020(4): 69-75. |
LIN W J, REN H. Analysis of economical efficiency for the alternative strategy of regional jets[J]. Civil Aircraft Design & Research, 2020(4): 69-75 (in Chinese). | |
5 | 林文进, 任和, 彭奇云. 国产支线飞机航线运营经济性分析框架[J]. 民用飞机设计与研究, 2019(4): 21-30. |
LIN W J, REN H, PENG Q Y. A general analysis model of economical efficiency for regional aircraft operation[J]. Civil Aircraft Design & Research, 2019(4): 21-30 (in Chinese). | |
6 | OSTER C V, ZORN C K. Airline deregulation, commuter safety, and regional air transportation[J]. Growth and Change, 1983, 14(3): 3-11. |
7 | 许红军, 孙继湖, 张会云. 中美支线航空发展模式比较研究[J]. 工业技术经济, 2007, 26(4): 78-80. |
XU H J, SUN J H, ZHANG H Y. Comparative study on regional aviation development models between China and America[J]. Industrial Technology & Economy, 2007, 26(4): 78-80 (in Chinese). | |
8 | 李瀚明. 支线航空之美国经验[J]. 大飞机, 2019(6): 57-60. |
LI H M. American experience of regional aviation[J]. Jetliner, 2019(6): 57-60 (in Chinese). | |
9 | 张慧. 欧盟如何支持支线航空发展[J]. 大飞机, 2020(12): 67-71. |
ZHANG H. How does EU support the development of regional aviation?[J]. Jetliner, 2020(12): 67-71 (in Chinese). | |
10 | 赵学训. 西部大开发与支线航空及支线飞机的发展[J]. 航空科学技术, 2001, 12(2): 9-12. |
ZHAO X X. The west development and developing regional airborne & regional aircraft[J]. Aeronautical Science and Technology, 2001, 12(2): 9-12 (in Chinese). | |
11 | 种曼婷. 我国支线航空运输的现状及发展趋势[J]. 宏观经济管理, 2008(5): 52-54. |
CHONG M T. Present situation and development trend of regional air transport in China[J]. Macroeconomic Management, 2008(5): 52-54 (in Chinese). | |
12 | 胡华清. 中国支线航空运输市场分析和需求预测[J]. 中国民用航空, 2003(5): 55-58. |
HU H Q. Analysis and demand prediction of Chinese regional aviation market[J]. Civil Aviation Economics & Technology, 2003(5): 55-58 (in Chinese). | |
13 | 张伟. 全球喷气支线飞机市场竞争态势[J]. 国际航空, 2017(7): 49-52. |
ZHANG W. Competition situation of global jet regional aircraft market[J]. International Aviation, 2017(7): 49-52 (in Chinese). | |
14 | 王国庆. 航空电子系统综合化与综合技术[M]. 上海: 上海交通大学出版社, 2019: 10-15. |
WANG G Q. Principles and techniques of avionics system integration[M]. Shanghai: Shanghai Jiao Tong University Press, 2019: 10-15 (in Chinese). | |
15 | 李堃, 吴敬伟, 戴超琦, 等. 浅谈小型航空发动机数字电子控制器设计技术[J]. 科技与企业, 2015(20): 209. |
LI K, WU J W, DAI C Q, et al. Design technology of digital electronic controller for small aeroengine[J]. Science-Technology Enterprise, 2015(20): 209 (in Chinese). | |
16 | 苗禾状, 袁长波, 李宁坤. 航空智能发动机发展需求及关键控制技术[J]. 航空科学技术, 2015, 26(5): 11-17. |
MIAO H Z, YUAN C B, LI N K. The development demand and key control technologies of intelligent aeroengine[J]. Aeronautical Science & Technology, 2015, 26(5): 11-17 (in Chinese). | |
17 | SAE. Guidelines for development of civil aircraft and systems: ARP4754A [S]. Washington,D.C.: SAE, 2011. |
18 | 霍萍, 赵永库, 刘斌. 基于模型的航空电子系统正向设计方法研究[J]. 中国设备工程, 2019(7): 153-154. |
HUO P, ZHAO Y K, LIU B. Research on forward design method of avionics system based on model[J]. China Plant Engineering, 2019(7): 153-154 (in Chinese). | |
19 | TAO F, ZHANG H, LIU A, et al. Digital twin in industry: State-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2405-2415. |
20 | 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18. |
TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18 (in Chinese). | |
21 | GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and U.S. air force vehicle[C]∥Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA,2012: 7274-7260 |
22 | TUEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011: 154798. |
23 | 刘亚威. 美国洛马公司利用数字孪生提速F-35战斗机生产[EB/OL]. (2017-12-27). ,2017-12-27. |
LIU Y W. Lockheed Martin used digital twin to speed up production of F-35[EB/OL]. (2017-12-27). ,2017-12-27 (in Chinese). | |
24 | HATAKEYAMA J, SEAL D, FARR D, et al. Systems engineering “V” in a model-based engineering environment: is it still relevant? [C]∥2018 AIAA SPACE and Astronautics Forum and Exposition. Reston: AIAA, 2018: 5326. |
25 | 何志强. 综合化航空电子系统发展历程及重要支撑技术[J]. 电讯技术, 2004, 44(4): 1-5. |
HE Z Q. Development and important supporting technology of integrated avionics system[J]. Telecommunication Engineering, 2004, 44(4): 1-5 (in Chinese). | |
26 | 黄永葵, 薛秋晖, 李卫民. 开放式系统结构及其标准研究[J]. 航空电子技术, 2005, 36(1): 34-41. |
HUANG Y K, XUE Q H, LI W M. A study on open systems architecture standards[J]. Avionics Technology, 2005, 36(1): 34-41 (in Chinese). | |
27 | 王国庆, 谷青范, 王淼, 等. 新一代综合化航空电子系统构架技术研究[J]. 航空学报, 2014, 35(6): 1473-1486. |
WANG G Q, GU Q F, WANG M, et al. Research on the architecture technology for new generation integrated avionics system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1473-1486 (in Chinese). | |
28 | LI D W, LIN M X, TIAN L. Design of iron bird for a regional jet aircraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234(3): 681-688. |
29 | 朱川, 徐德胜, 谢殿煌, 等. 民用飞机集成验证试验平台规划研究[J]. 民用飞机设计与研究, 2018(4): 50-55. |
ZHU C, XU D S, XIE D H, et al. Research on planning of integrated verification test bench for civil aircraft[J]. Civil Aircraft Design & Research, 2018(4): 50-55 (in Chinese). | |
30 | SAE. Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment: SAE ARP 4761-1996 [S]. Washington,D.C.: SAE, 1996. |
31 | 中国民用航空局. 运输类飞机适航标准: CCAR25.1309 [S]. 北京: 中国民用航空局, 2011. |
Civil Aviation Administration of China. Airworthiness standards of transport category aircraft: CCAR25.1309 [S]. Beijing: Civil Aviation Administration of China, 2011 (in Chinese). | |
32 | Hazard and operability studies (HAZOP studies) - Application guide: Ed. 1.0 b: 2001[S]. International Electrotechnical Commission, 2001. |
33 | HAASL D F, ROBERTS N H, GOLDBERG F F, et al. Fault tree handbook[M]. Washington, D.C.: Nuclear Regulatory Commission, 1981 |
34 | Functional safety of electrical/electronic/programmable electronic safety/related systems, analysis techniques for system reliability—procedure for failure mode and effect analysis(FMEA): [S]. 1991. |
35 | SHARVIA S, PAPADOPOULOS Y. Integrating model checking with HiP-HOPS in model-based safety analysis[J]. Reliability Engineering & System Safety, 2015, 135: 64-80. |
36 | 陈磊, 焦健, 赵廷弟. 基于模型的复杂系统安全分析综述[J]. 系统工程与电子技术, 2017, 39(6): 1287-1291. |
CHEN L, JIAO J, ZHAO T D. Review for model-based safety analysis of complex safety-critical system[J]. Systems Engineering and Electronics, 2017, 39(6): 1287-1291 (in Chinese). | |
37 | AJAY M. Energy conversion and storage requirements for hybrid electric aircraft[EB/OL]. (2016-1-27). . |
38 | 方沐. 电动支线飞机的研发热潮[J]. 大飞机, 2018(9): 45-46, 48. |
FANG M. Research and development boom of electric regional aircraft[J]. Jetliner, 2018(9): 45-46, 48 (in Chinese). | |
39 | 孙侠生, 程文渊, 穆作栋, 等. 电动飞机发展白皮书[J]. 航空科学技术, 2019, 30(11): 1-7. |
SUN X S, CHENG W Y, MU Z D, et al. White paper on the development of electric aircraft[J]. Aeronautical Science & Technology, 2019, 30(11): 1-7 (in Chinese). | |
40 | 张嘉毅. 引领航空业变革的颠覆性技术[J]. 大飞机, 2020(10): 12-17. |
ZHANG J Y. Disruptive technology leading the change of aviation industry[J]. Jetliner, 2020(10): 12-17 (in Chinese). | |
41 | LIM Y, BASSIEN-CAPSA V, RAMASAMY S, et al. Commercial airline single-pilot operations: System design and pathways to certification[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(7): 4-21. |
42 | 王淼, 肖刚, 王国庆. 单一飞行员驾驶模式技术[J]. 航空学报, 2020, 41(4): 323541. |
WANG M, XIAO G, WANG G Q. Single pilot operation mode technology[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 323541 (in Chinese). | |
43 | COMERFORD D, BRANDT S L, LACHTER J, et al. NASA’s single-pilot operations technical interchange meeting: Proceedings and findings: NASA/CP-2013-216513[R]. Washington, D.C.: NASA, 2013. |
44 | BILIMORIA K D, JOHNSON W W, SCHUTTE P C. Conceptual framework for single pilot operations[C]∥ Proceedings of the International Conference on Human-Computer Interaction in Aerospace. New York: ACM, 2014: 1-8. |
45 | FABER A. Single pilot commercial operations: A study of the technical hurdles[D]. Delft: Delft University of Technology, 2013. |
46 | STANTON N A, HARRIS D, STARR A. The future flight deck: Modelling dual, single and distributed crewing options[J]. Applied Ergonomics, 2016, 53: 331-342. |
47 | THOMAS E, BLEEKER O. Options for insertion of RPAS into the air traffic system[C]∥2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2015: 1-17. |
48 | WASHINGTON A, CLOTHIER R, NEOGI N, et al. Adoption of a Bayesian belief network for the system safety assessment of remotely piloted aircraft systems[J]. Safety Science, 2019, 118: 654-673. |
49 | MACHUCA J P, MILLER M E, COLOMBI J M. A Cognitive task analysis-based evaluation of remotely piloted aircraft situation awareness transfer mechanisms[C]∥2012 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support. Piscataway: IEEE Press, 2012: 179-182. |
50 | ZIELIŃSKI T, MARUD W. Challenges for integration of remotely piloted aircraft systems into the European sky[J]. Scientific Journal of Silesian University of Technology Series Transport, 2019, 102: 217-229. |
51 | CAPELLO E, DENTIS M, GUGLIERI G, et al. An innovative cloud-based supervision system for the integration of RPAS in urban environments[J]. Transportation Research Procedia, 2017, 28: 191-200. |
52 | JIANG T, GELLER J, NI D H, et al. Unmanned aircraft system traffic management: Concept of operation and system architecture[J]. International Journal of Transportation Science and Technology, 2016, 5(3): 123-135. |
53 | LUO Y, WANG M, XIAO G, et al. Conceptual architecture for remotely piloted operations (RPO) mode in commercial aircraft[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(2): 274-287. |
54 | 民航资源网. 中国支线航空联盟模式初探[EB/OL]. . |
Civil Aviation Resource Network. A preliminary study on the model of China regional airlines alliance[EB/OL]. . | |
55 | 魏君. 航空货运市场的新机遇[J]. 大飞机, 2020(9): 69-73. |
WEI J. New opportunities in the air freight market[J]. Jetliner, 2020(9): 69-73 (in Chinese). | |
56 | 中国民航局. 中国民用航空规章第25部运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民航局, 2011. |
Civil Aviation Administration of China. Airworthiness standard for transport aircraft, Part 25 of China civil aviation regulations: CCAR-25-R4[S] Beijing: Civil Aviation Administration of China, 2011 | |
57 | 孙智孝, 杨晟琦, 朴海音, 等. 未来智能空战发展综述[J]. 航空学报, 2021, 42(8): 525799. |
SUN Z X, YANG S Q, PIAO H Y, et al. A survey of air combat artificial intelligence[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525799 (in Chinese). | |
58 | KARR D, ROSCOE D, VIVONA R. An integrated flight-deck decision-support tool in an autonomous flight simulation[C]∥ AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston: AIAA, 2004: 5261. |
59 | BAILEY R, PRINZEL III L J, KRAMER L J, et al. Concept of operations for integrated intelligent flight deck displays and decision support technologies: NASA/TM-2011-217081[R]. Washington, D.C.: NASA, 2011. |
60 | 胡志强, 罗荣. 基于大数据分析的作战智能决策支持系统构建[J]. 指挥信息系统与技术, 2021, 12(1): 27-33. |
HU Z Q, LUO R. Construction for combat intelligent decision support system based on big data analysis[J]. Command Information System and Technology, 2021, 12(1): 27-33 (in Chinese). | |
61 | 范彦铭. 无人机的自主与智能控制[J]. 中国科学: 技术科学, 2017, 47(3): 221-229. |
FAN Y M. Autonomous and intelligent control of the unmanned aerial vehicle[J]. Scientia Sinica (Technologica), 2017, 47(3): 221-229 (in Chinese). | |
62 | 陈宗基, 魏金钟, 王英勋, 等. 无人机自主控制等级及其系统结构研究[J]. 航空学报, 2011, 32(6): 1075-1083. |
CHEN Z J, WEI J Z, WANG Y X, et al. UAV autonomous control levels and system structure[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1075-1083 (in Chinese). |
[1] | 董磊, 陈泓兵, 陈曦, 赵长啸. 基于DQN的单一飞行员驾驶模式分布式多智能体联盟任务分配策略[J]. 航空学报, 2023, 44(13): 327895-327895. |
[2] | 石健, 王少萍, 罗雪松. 基于不确定传感器状态的机载系统多层故障诊断方法[J]. 航空学报, 2021, 42(6): 624376-624376. |
[3] | 卢新来, 杜子亮, 许赟. 航空人工智能概念与应用发展综述[J]. 航空学报, 2021, 42(4): 525150-525150. |
[4] | 杨凤田, 范振伟, 项松, 刘远强, 赵为平. 中国电动飞机技术创新与实践观点[J]. 航空学报, 2021, 42(3): 624619-624619. |
[5] | 王淼, 肖刚, 王国庆. 单一飞行员驾驶模式技术[J]. 航空学报, 2020, 41(4): 323541-323541. |
[6] | 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1): 57-68. |
[7] | 王少萍. 大型飞机机载系统预测与健康管理关键技术[J]. 航空学报, 2014, 35(6): 1459-1472. |
[8] | 朱自强;王晓璐;吴宗成;陈泽民. 小型和微型无人机的气动特点和设计[J]. 航空学报, 2006, 27(3): 353-364. |
[9] | 朱自强;王晓璐;陈泽民;吴宗成. 无人驾驶飞行器的气动特点和设计[J]. 航空学报, 2006, 27(2): 161-174. |
[10] | 张晓林. 无人驾驶直升机遥测遥控与电子系统设计[J]. 航空学报, 2002, 23(5): 431-435. |
[11] | 赵琦;张晓林. 共轴式无人驾驶直升机飞行数据可视化系统的设计[J]. 航空学报, 2001, 22(S1): 43-47. |
[12] | 董居忠;康风举. 某无人驾驶飞机的半实物仿真[J]. 航空学报, 1997, 18(2): 157-162. |
[13] | 罗锋;夏云程. “长空”超低空无人驾驶飞机的飞行控制系统[J]. 航空学报, 1990, 11(6): 261-268. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 679
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 911
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学