航空学报 > 2022, Vol. 43 Issue (7): 325526-325526   doi: 10.7527/S1000-6893.2021.25526

基于FCM的多无人机协同攻击决策建模方法

陈军1, 梁晶1, 程龙2, 佟龑1   

  1. 1. 西北工业大学 电子信息学院, 西安 710072;
    2. 空军工程大学 信息与导航学院, 西安 710077
  • 收稿日期:2021-03-18 修回日期:2021-06-11 发布日期:2021-05-31
  • 通讯作者: 陈军,E-mail:junchen@nwpu.edu.cn E-mail:junchen@nwpu.edu.cn
  • 基金资助:
    国家自然科学基金(61305133);航空科学基金(2020Z023053002)

Cooperative attack decision modeling method of multiple UAVs based on FCM

CHEN Jun1, LIANG Jing1, CHENG Long2, TONG Yan1   

  1. 1. School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China;
    2. School of Information and Navigation, Air Force Engineering University, Xi'an 710077, China
  • Received:2021-03-18 Revised:2021-06-11 Published:2021-05-31
  • Supported by:
    National Natural Science Foundation of China (61305133); Aeronautical Science Foundation of China(2020Z023053002)

摘要: 针对复杂不确定战场环境下多无人机协同任务的需求,提出了一种基于模糊认知图(FCM)及其扩展模型的多无人机协同攻击决策建模方法。基于人的决策心智模式,采用智能体模糊认知图(ABFCM)建立了包含感性和理性2种决策模式的多无人机协同攻击决策系统模型框架。采用模糊灰色认知图(FGCM)对多无人机的态势感知和协同攻击决策开展了建模工作。借鉴人脑杏仁核机理建立了态势-决策模板快速匹配的感性攻击决策模型。为降低建模工作对专家知识的依赖,采用直觉模糊集的决策阈值算法提高理性攻击决策模型的客观性,并采用动量梯度下降(MGD)学习算法进一步提高了决策模型的学习进化能力。通过仿真验证分析表明,基于FCM的多无人机协同攻击决策建模方法能够较好地应对复杂不确定战场环境,发挥知识和数据在建模中的综合作用,可为提升多无人机执行任务的决策优势提供理论指导和建模方法参考。

关键词: 协同攻击决策, 态势感知, 模糊认知图, 直觉模糊集, 动量梯度下降

Abstract: According to the requirements for multi-UAV cooperative mission in the complex and uncertain battlefield environment, a decision-making modeling method of multi-UAV cooperative attack based on the Fuzzy Cognitive Map (FCM) and its extended model are proposed. Based on the human decision-making mental model, the model framework of the multi-UAV cooperative attack decision-making system including the perceptual and rational decision-making modes is established by using the Agent-Based Fuzzy Cognitive Map (ABFCM). The Fuzzy Grey Cognitive Map (FGCM) is used to model the situation awareness and cooperative attack decision of multi-UAVs. Based on the amygdala mechanism of human brain, a perceptual attack decision model for quick matching of situation and decision template is established. To reduce the dependence of modeling work on expert knowledge, a rational attack decision model is established based on the decision threshold algorithm of intuitionistic fuzzy sets, and the learning and evolution ability of the decision model is further improved by using the Momentum Gradient Descent (MGD) learning algorithm. The simulation results show that the method proposed can better cope with the complex and uncertain battlefield environment, give full play to the comprehensive role of knowledge and data in modeling, and provide theoretical and modeling guidance for improving the decision-making advantages in mission execution by multi-UAVs.

Key words: cooperative attack decision, situation awareness, fuzzy cognitive map, intuitionistic fuzzy set, momentum gradient descenthttp

中图分类号: