[1] 杨雄伟, 李跃明, 耿谦. 基于混合FE-SEA法的高温环境飞行器宽频声振特性分析[J]. 航空学报, 2011, 32(10):1851-1859. YANG X W, LI Y M, GENG Q. Broadband vibro-acoustic response of aircraft in high temperature environment based on hybrid FE-SEA[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1851-1859(in Chinese). [2] 吴大方, 林鹭劲, 吴文军, 等. 1500℃极端高温环境下高超声速飞行器轻质隔热材料热/振联合试验[J]. 航空学报, 2020, 41(7):223612. WU D F, LIN L J, WU W J, et al. Thermal/vibration test of lightweight insulation material for hypersonic vehicle under extreme-high-temperature environment up to 1500℃[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):223612(in Chinese). [3] 赵宏达, 丁继锋, 郝志伟, 等. 复杂航天器结构火工冲击环境预示方法研究[J]. 宇航学报, 2020, 41(1):35-43. ZHAO H D, DING J F, HAO Z W, et al. Study onprediction methods of pyroshock environment for complex spacecraft structures[J]. Journal of Astronautics, 2020, 41(1):35-43(in Chinese). [4] CREMER L, HECKL M, PETERSSON B, et al. Structure-borne sound:structural vibrations and sound radiation at audio frequencies[J]. The Journal of the Acoustical Society of America, 2005, 118(5):2754. [5] 王小东, 秦一凡, 季宏丽, 等. 基于声学黑洞效应的直升机驾驶舱宽带降噪[J]. 航空学报, 2020, 41(10):223831. WANG X D, QIN Y F, JI H L, et al. Broadband noise reduction inside helicopter cockpit with acoustic black hole effect[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10):223831(in Chinese). [6] 胡君逸, 李跃明, 李海波, 等. 考虑热应力、热变形正交各向异性板的动特性及响应规律[J]. 工程力学, 2018, 35(8):218-229. HU J Y, LI Y M, LI H B, et al. Researches on vibration characteristic and dynamic response of orthotropic plate with thermal stress and deformation[J]. Engineering Mechanics, 2018, 35(8):218-229(in Chinese). [7] BANERJEE J R, SU H, JAYATUNGA C. A dynamic stiffness element for free vibration analysis of composite beams and its application to aircraft wings[J]. Computers & Structures, 2008, 86(6):573-579. [8] CHEN Z L, YANG Z C, GU Y S, et al. An energy flow model for high-frequency vibration analysis of two-dimensional panels in supersonic airflow[J]. Applied Mathematical Modelling, 2019, 76:495-512. [9] KAYA M O. Free vibration analysis of a rotating Timoshenko beam by differential transform method[J]. Aircraft Engineering and Aerospace Technology, 2006, 78(3):194-203. [10] GU L L, QIN Z Y, CHU F L. Analytical analysis of the thermal effect on vibrations of a damped Timoshenko beam[J]. Mechanical Systems and Signal Processing, 2015, 60-61:619-643. [11] AVSEC J, OBLAK M. Thermal vibrational analysis for simply supported beam and clamped beam[J]. Journal of Sound and Vibration, 2007, 308(3-5):514-525. [12] CHEN Q, MA W Y, FEI Q G, et al. An efficient wave based method for the mid-frequency transverse vibration analysis of a thermal beam with interval uncertainties[J]. Aerospace Science and Technology, 2021, 110:106438. [13] LANGLEY R S, CORDIOLI J A. Hybrid deterministic-statistical analysis of vibro-acoustic systems with domain couplings on statistical components[J]. Journal of Sound and Vibration, 2009, 321(3-5):893-912. [14] LE BOT A. Foundation of statistical energy analysis in vibroacoustics[M]. Oxford:Oxford University Press, 2015. [15] 陈强, 张鹏, 李彦斌, 等. 热环境下长宽比对L型折板统计能量分析参数的影响研究[J]. 振动与冲击, 2018, 37(4):191-196, 202. CHEN Q, ZHANG P, LI Y B, et al. Effect of aspect ratio on statistical energy analysis parameters of L-shaped folded plate under thermal environment[J]. Journal of Vibration and Shock, 2018, 37(4):191-196, 202(in Chinese). [16] 陈强, 张鹏, 李彦斌, 等. 基于FEM-PIM计及热效应的统计能量分析[J]. 航空动力学报, 2017, 32(6):1366-1374. CHEN Q, ZHANG P, LI Y B, et al. Statistical energy analysis considering thermal effect based on FEM-PIM[J]. Journal of Aerospace Power, 2017, 32(6):1366-1374(in Chinese). [17] CHEN Q, FEI Q G, LI Y B, et al. Prediction of statistical energy analysis parameters in thermal environment[J]. Journal of Spacecraft and Rockets, 2019, 56(3):687-694. [18] 胡婉璐, 陈海波, 钟强. 轴力对梁结构耦合损耗因子的影响研究[J]. 振动与冲击, 2020, 39(17):24-30. HU W L, CHEN H B, ZHONG Q. Effects of axial force on coupling loss factor of beam structures[J]. Journal of Vibration and Shock, 2020, 39(17):24-30(in Chinese). [19] 代文强, 郑旭, 郝志勇, 等. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12):2396-2403. DAI W Q, ZHENG X, HAO Z Y, et al. Prediction of high-speed train interior noise using energy finite element analysis[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(12):2396-2403(in Chinese). [20] 王怀志, 于开平, 张宗强, 等. 仪器舱结构的能量有限元中频声振环境预示[J]. 振动与冲击, 2019, 38(10):143-148. WANG H Z, YU K P, ZHANG Z Q, et al. Prediction of the acoustic-vibration environment of an instrument cabin by using the energy finite element method[J]. Journal of Vibration and Shock, 2019, 38(10):143-148(in Chinese). [21] 陈兆林, 杨智春, 王用岩, 等. 基于能量有限元法和虚拟模态综合法的高频冲击响应分析方法[J]. 航空学报, 2018, 39(8):221893. CHEN Z L, YANG Z C, WANG Y Y, et al. A high-frequency shock response analysis method based on energy finite element method and virtual mode synthesis and simulation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8):221893(in Chinese). [22] 滕晓艳, 丰国宝, 江旭东, 等. 自由阻尼梁高频能量流响应的解析模型[J]. 航空学报, 2019, 40(4):222616. TENG X Y, FENG G B, JIANG X D, et al. Analytical model of high-frequency energy flow response for a beam with free layer damping[J]. Acta Aeronautica et AstronauticaSinica, 2019, 40(4):222616(in Chinese). [23] ZHANG W B, CHEN H L, ZHU D H, et al. The thermal effects on high-frequency vibration of beams using energy flow analysis[J]. Journal of Sound and Vibration, 2014, 333(9):2588-2600. [24] WANG D, XIE M X, LI Y M. High-frequency dynamic analysis of plates in thermal environments based on energy finite element method[J]. Shock and Vibration, 2015, 2015:157208. [25] WANG X C, YANG Z C, WANG W, et al. Nonlinear viscoelastic heated panel flutter with aerodynamic loading exerted on both surfaces[J]. Journal of Sound and Vibration, 2017, 409:306-317. [26] DOWELL E H. Nonlinear oscillations of a fluttering plate[J]. AIAA Journal, 1966, 4(7):1267-1275. [27] SHE G L, YUAN F G, REN Y R. Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory[J]. Applied Mathematical Modelling, 2017, 47:340-357. [28] RAO S S. Vibration of continuous systems[M]. Hoboken:John Wiley & Sons, Inc., 2006. [29] NAVAZI H M, NOKHBATOLFOGHAHAEI A, GHOBAD Y, et al. Experimental measurement of energy density in a vibrating plate and comparison with energy finite element analysis[J]. Journal of Sound and Vibration, 2016, 375:289-307. [30] WOHLEVER J C, BERNHARD R J. Mechanical energy flow models of rods and beams[J]. Journal of Sound and Vibration, 1992, 153(1):1-19. [31] CHEN Z L, YANG Z C, GUO N, et al. An energy finite element method for high frequency vibration analysis of beams with axial force[J]. Applied Mathematical Modelling, 2018, 61:521-539. |