[1] FURUYA Y, KOBAYASHI K, HAYAKAWA M, et al. High-temperature ultrasonic fatigue testing of single-crystal superalloys[J]. Materials Letters, 2012, 69:1-3. [2] 杨正伟, 赵志彬, 李胤, 等. 压-压疲劳载荷下CFRP层合板表面红外辐射特征[J]. 航空学报, 2021, 42(5):524239. YANG Z W, ZHAO Z B, LI Y, et al. Study on infrared radiation characteristics on the surface of CFRP laminates under compressive fatigue load[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524239(in Chinese). [3] 蔺越国, GIGLIOTTI M, LAFARIE-FRENOT M C, 等. 电-热耦合对航空复合材料拉伸及疲劳性能的影响[J]. 航空学报, 2014, 35(12):3315-3323. LIN Y G, GIGLIOTTI M, LAFARIE-FRENOT M C, et al. Thermo-electricalcoupling effect on tensile and fatigue strength of composite materials for aeronautical application[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3315-3323(in Chinese). [4] ROSA L G, RISITANO A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components[J]. International Journal of Fatigue, 2000, 22(1):65-73. [5] FARGIONE G, GERACI A, ROSA LA G, et al. Rapid determination of the fatigue curve by the thermographic method[J]. International Journal of Fatigue, 2002, 24(1):11-19. [6] LUONG M P.Infrared thermographic scanning of fatigue in metals[J]. NDT & E International, 1995, 29(6):392. [7] LUONG M P. Fatigue limit evaluation of metals using an infrared thermographic technique[J]. Mechanics of Materials, 1998, 28:155-163. [8] CRUPI V, GUGLIELMINO E, MAESTRO M, et al. Fatigue analysis of butt welded AH36 steel joints:Thermographic Method and design S-N curve[J]. Marine Structures, 2009, 22(3):373-386. [9] GUO Q, GUO X L, FAN J L,et al. An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation[J]. International Journal of Fatigue, 2015, 80:136-144. [10] 许罗鹏, 王清远. 基于红外成像技术的铝锂合金2198疲劳裂纹监测机制研究[J]. 科学技术与工程, 2017, 17(19):1-7. XU L P, WANG Q Y. A research on monitoring fatigue crack growth of Al-Li Alloy 2198 based on infrared thermographic technology[J]. Science Technology and Engineering, 2017, 17(19):1-7(in Chinese). [11] XU L P, WANG Q Y, ZHOU M. Micro-crackinitiation and propagation in a high strength aluminum alloy during very high cycle fatigue[J]. Materials Science & Engineering A, 2018, 715:404-413. [12] WANG C, BLANCHE A, WAGNER D, et al. Dissipative and microstructural effects associated with fatigue crack initiation on an Armco iron[J]. International Journal of Fatigue, 2014, 58:152-157. [13] 张红霞, 裴飞飞, 闫志峰, 等. 基于红外热像法的AZ31B镁合金疲劳寿命预测[J]. 稀有金属材料与工程, 2014, 43(10):2525-2529. ZHANG H X, PEI F F, YAN Z F, et al. Prediction of AZ31B magnesium alloy fatigue life based on infrared thermography[J]. Rare Metal Materials and Engineering, 2014, 43(10):2525-2529(in Chinese). [14] 樊俊铃, 郭杏林, 吴承伟, 等. 热像法和能量法快速评估Q235钢的疲劳性能[J]. 材料工程, 2012(12):75-80. FAN J L, GUO X L, WU C W, et al. Fastevaluation of fatigue behavior of Q235 steel by infrared thermography and energy approach[J]. Journal of Materials Engineering, 2012(12):75-80(in Chinese). [15] RAY A, ROY U, KUMARI M, et al. Therole of substructural features on the deformation and fracture behavior of BCC and FCC high entropy alloys[J]. Procedia Structural Integrity, 2019, 23:299-304. [16] 薛红前, 杨斌堂, BATHIAS C. 高频载荷下高强钢的超高周疲劳及热耗散研究[J]. 材料工程, 2009(3):49-53. XUE H Q, YANG B T, BATHIAS C. Veryhigh cycle fatigue behavior and thermographic analysis of high strength steels under high frequency loading[J]. Journal of Materials Engineering, 2009(3):49-53(in Chinese). [17] XUE H Q, BAYRAKTAR E, BATHIAS C. Damage mechanism of a nodular cast iron under the very high cycle fatigue regime[J]. Journal of Materials Processing Technology, 2008, 202(1):216-223. [18] 魏凌霄, 闫志峰, 王文先, 等. 基于红外热成像的镁合金疲劳裂纹扩展的研究[J]. 机械工程学报, 2012, 48(6):64-69. WEI L X, YAN Z F, WANG W X, et al. Study onfatigue crack propagation of AZ31B magnesium alloy based on infrared thermographic technology[J]. Journal of Mechanical Engineering, 2012, 48(6):64-69(in Chinese). [19] RIOJA R J, LIU J. Theevolution of Al-Li base products for aerospace and space applications[J]. Metallurgical & Materials Transactions A, 2012, 43(9):3325-3337. [20] DURSUN T, SOUTIS C. Recent developments in advanced aircraftaluminium alloys[J]. Materials & Design, 2014, 56(4):862-871. [21] 许罗鹏, 曹小建, 李久楷, 等. 铝锂合金2198-T8高周疲劳性能及其裂纹萌生机理[J]. 稀有金属材料与工程, 2017, 46(1):83-89. XU L P, CAO X J, LI J K, et al. Highcycle fatigue properties and crack initiation mechanisms of Al-Li 2198-T8 alloy[J]. Rare Metal Materials and Engineering, 2017, 46(1):83-89(in Chinese). [22] 姜丽萍. C919的制造技术热点及最新研制进展[J]. 航空制造技术, 2013, 442(22):26-31. JIANG L P. Hottopic and the latest advances in manufacturing technology of C919[J]. Aeronautical Manufacturing Technology, 2013, 442(22):26-31(in Chinese). [23] BENEDETTI M, FONTANARI V, BANDINI M, et al. High-and very high-cycle plain fatigue resistance of shot peened high-strength aluminum alloys:The role of surface morphology[J]. International Journal of Fatigue, 2015, 70:451-462. [24] RAMOS R, FERREIRA N, FERREIRA J A M, et al. Improvement in fatigue life of Al 7475-T7351 alloy specimens by applying ultrasonic andmicroshot peening[J]. International Journal of Fatigue, 2016, 92:87-95. [25] TAKAHASHI K, OSEDO H, SUZUKI T, et al. Fatigue strength improvement of an aluminum alloy with a crack-like surface defect using shot peening and cavitation peening[J]. Engineering Fracture Mechanics, 2018, 193:151-161. [26] SUN B L, WANG Y J, XIAO J Y, et al. Evolution ofmicrostructure and properties of 2196 Al-Li alloy induced by shot peening[J]. Procedia Engineering, 2014, 81:1043-1048. [27] 张杰, 白雪飘, 陆业航, 等. 不同强度喷丸处理后铝锂合金表面的残余应力[J]. 机械工程材料, 2016, 40(2):37-39. ZHANG J, BAI X P, LU Y H, et al. Surfaceresidual stress in aluminum-lithium alloy shot-peened at different shot peening intensities[J]. Materials for Mechanical Engineering, 2016, 40(2):37-39(in Chinese). |