[1] MAVRIPLIS D J. An advancing front Delaunay triangulation algorithm designed for robustness[J]. Journal of Computational Physics, 1995, 117(1):90-101. [2] ITO Y, NAKAHASHI K. Unstructured hybrid grid generation baseds on isotropic tetrahedral grids:AIAA-2002-0861[R]. Reston, VA:AIAA, 2002. [3] KALLINDERIS Y, WARD S. Prismatic grid generation with an efficient algebraic method for aircraft configuration:AIAA-1992-2721[R]. Reston, VA:AIAA, 1992. [4] DE ZEEUW D L. A quadtree-based adaptively-refined Cartesian-grid algorithm for solution of the Euler equations[D]. Michigan:University of Michigan, 1993. [5] MURAT B. Quadtree-based adaptively-refined Cartesian-grid algorithm for solution of the Euler equations[D]. Michigan:University of Michigan, 2005. [6] ROBERT R A, VLADIMIR I K. Direct simulation Monte Carlo with octree Cartesian mesh[J]. AIAA Journal, 2012, 20(2):25-28. [7] FUJIMOTO K, FUJⅡ K, WANG Z J. Improvements in the reliability and efficiency of body-fitted Cartesian grid method:AIAA-2009-1173[R]. Reston, VA:AIAA, 2009. [8] UDAYKUMAR H S. Multiphase dynamics in arbitrary geometries on fixed Cartesian grids[J]. Journal of Computational Physics, 1997, 137(2):366-405. [9] UDAYKUMAR H S. A sharp interface Cartesian grid method for simulating flow with complex moving boundaries[J]. Journal of Computational Physics, 2001, 174(1):345-380. [10] MARSHALL D D. Extending the functionalities of Cartesian grid solvers:Viscous effects modeling and MPI parallelization[D]. Georgia:Georgia Institute of Technology, 2002. [11] FORRER H, JELTSCH R. A higher order boundary treatment for Cartesian-grid method[J]. Journal of Computational Physics, 1998, 140(2):259-277. [12] JAE-DOO L, RUFFIN S M. Development of a turbulent wall-function based viscous Cartesian-grid methodology:AIAA-2007-1326[R]. Reston, VA:AIAA, 2007. [13] JAE-DOO L. Development of an efficient viscous approach in a Cartesian grid framework and application to rotor-fuselage interaction[D]. Georgia:Georgia Institute of Technology, 2006. [14] DE ZEEUW D L. A wave-model-based refinement criterion for adaptive-grid computation of compressible flow:AIAA-1992-0332[R]. Reston, VA:AIAA, 1992. [15] 张涵信. 无波动、无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 6(2):143-165. ZHANG H X. A non-oscillatory, containing no free parameters and dissipative scheme[J]. Acta Aerodynamica Sinica, 1988, 6(2):143-165(in Chinese). [16] VAN LEER B. Flux vector splitting for Euler equations[J]. Lecture Notes in Physics, 1982:507-512. [17] ENGQUIST B, MAJDA A. Absorbing boundary conditions for the numerical simulation of waves[J]. Mathematics of Computation, 1977, 31:629-651. [18] GUSIAFSSON B, SANDSTROM A. Incompletely parabolic problems in fluid dynamics[J]. SIAM Journal on Applied Mathematics, 1978, 35:343-357. [19] DADONE A, GROSSMAN B. An immersed body methodology for inviscid flows on Cartesian grids:AIAA-2002-1059[R]. Reston, VA:AIAA, 2002. [20] DADONE A, GROSSMAN B. Surface boundary conditions for the numerical solution of the Euler equations[J]. AIAA Journal, 1994, 32(2):285-293. [21] FORRER H, BERGER M. Flow simulations on Cartesian grids involving complex moving geometries[C]//Proceedings of 6th International Conference on Hyperbolic Problems, 1998. [22] BASHKIN V A, VAGANOV A V, EGOROV I V, et al. Comparison of calculated and experimental data on supersonic flow past a circular cylinder[J]. Fluid Dynamics, 2002, 37(3):473-483. [23] MUNIKRISHNA N, LIOU M S. A Cartesian based body-fitted adaptive grid method for compressible viscous flows[R]. Reston, VA:AIAA, 2009. [24] 鲁阳, 邹建锋, 郑耀. 基于非结构网格的TTGC有限元格式的实现及在超声速流动中的应用[J]. 计算力学学报, 2013, 30(5):712-722. LU Y, ZOU J F, ZHENG Y. Unstructured grids based on TTGC finite element scheme and its application to supersonic flows[J]. Chinese Journal of Computational Mechanics, 2013, 30(5):712-722(in Chinese). [25] BOIRON O, CHIAVASSA G, DONAT R. A high-resolution penalization method for large Mach number flows in the presence of obstacles[J]. Computers & Fluids, 2009, 38(3):703-714. [26] RUDY D H, THOMAS J L, KUMAR A. Computation of laminar viscous-inviscid interactions in high-speed internal flows[J]. AIAA Journal, 1991, 29(7):1108-1113. |