[1] 程浩. "自适应加工"技术——零件快速装夹新概念[J]. 航空制造技术, 2006(5): 110-111. CHENG H. "Adaptive machining technology"—A new concept of rapid assembly of parts[J]. Aeronautical Manufacturing Technology, 2006(5): 110-111 (in Chinese).
[2] 蔺小军, 陈悦, 王志伟, 等. 面向自适应加工的精锻叶片前后缘模型重构[J]. 航空学报, 2015, 36(5): 1695-1703. LIN X J, CHEN Y, WANG Z W, et al. The research of model restructuring about leading edge and tailing edge of precision forging blade for the adaptive machining technology[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1695-1703 (in Chinese).
[3] LI X M, YEUNG M, LI Z X. An algebraic algorithm for workpiece localization[C]//Proceedings of IEEE International Conference on Robotics and Automation, 1996: 152-158.
[4] YI X, MA L M, LI Z X. A geometric algorithm for symmetric workpiece localization[C]//7th World Congress on Intelligent Control and Automation, 2008: 6065-6069.
[5] LI Z X, GOU J B, CHU Y X. Geometric algorithms for workpiece localization[J]. IEEE Transactions on Robotics & Automation, 1999, 14(6): 864-878.
[6] CHU Y X, GOU J B, LI Z X. On the hybrid workpiece localization/envelopment problems[J]. IEEE International Conference on Robotics and Automation, 1998, 18(5): 3665-3670.
[7] GOU J B, CHU Y, LU Z X. On the symmetric localization problem[J]. IEEE Transactions on Robotics & Automation, 1998, 14(4): 533-540.
[8] XIONG Z H, LI Z X. On the discrete symmetric localization problem[J]. International Journal of Machine Tools and Manufacture, 2003, 43(9): 863-870.
[9] CHATELAIN J F, FORTIN C. A balancing technique for optimal blank part machining[J]. Precision Engineering, 2001, 25(1): 13-23.
[10] CHATELAIN J F. A level-based optimization algorithm for complex part localization[J]. Precision Engineering, 2005, 29(2): 197-207.
[11] ZHANG Y, ZHANG D H, WU B H. An approach for machining allowance optimization of complex parts with integrated structure[J]. Journal of Computational Design & Engineering, 2015, 2(4): 248-252.
[12] WU B H, WANG J, ZHANG Y, et al. Adaptive location of repaired blade for multi-axis milling[J]. Journal of Computational Design & Engineering, 2015, 33(4): 261-267.
[13] ZHU L M, ZHEN H X, DING H, et al. A distance function based approach for localization and profile error evaluation of complex surface[J]. Journal of Manufacturing Science & Engineering, 2004, 126(3): 542-554.
[14] ZHU L M, ZHANG X M, DING H, et al. Geometry of signed point-to-surface distance function and its application to surface approximation[J]. Journal of Computing & Information Science in Engineering, 2010, 10(4): 819-829.
[15] 张定华, 程云勇, 卜昆, 等. 考虑弯扭变形的叶片模型配准方法[J]. 航空学报, 2009, 30(12): 2449-2455. ZHANG D H, CHENG Y Y, BU K, et al. Realiable alignment method for blade shape analysis considering its blade and twist deformation[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2449-2455 (in Chinese).
[16] 敬石开, 程云勇, 张定华, 等. 一种区域公差约束的叶片模型配准方法[J]. 计算机集成制造系统, 2010, 16(4): 883-886. JING S K, CHENG Y Y, ZHANG D H, et al. Tolerance zone constrained alignment method for turbine blade model[J]. Computer Integrated Manufacturing System, 2010, 16(4): 883-886 (in Chinese).
[17] 吕北生, 程云勇. 轮廓度公差约束的叶片模型配准方法[J]. 计算机集成制造系统, 2016, 22(8): 1831-1836. LV B S, CHENG Y Y. Profile tolerance constrained registration method for blade model[J]. Computer Integrated Manufacturing System, 2016, 22(8): 1831-1836 (in Chinese).
[18] PATRIKALAKIS N M. Shape interrogation for computer aided design and manufacturing[M]. Berlin: Springer, 2002: 308-310.
[19] PIEGL L, TILLER W. The NURBS book[M]. 2nd ed. New York: Springer-Verlag, 1997: 163-167.
[20] 施法中. 计算机辅助几何设计与非均匀有理B样条[M]. 北京: 高等教育出版社, 2001: 441-444. SHI F Z. Computer aided geometric design and non-uniform rational b-spline[M]. Beijing: Higher Education Press, 2001: 441-444 (in Chinese).
[21] 王国瑾, 汪国昭, 郑建民. 计算机辅助几何设计[M]. 北京: 高等教育出版社, 2001: 114-118. WANG G J, WANG G Z, ZHENG J M. Computer aided geometric design[M]. Beijing: Higher Education Press, 2001: 114-118 (in Chinese). |