[1] DAVOLI P, BERNASCONI A, FILIPPINI M, et al. Independence of the torsional fatigue limit upon a mean shear stress[J]. International Journal of Fatigue, 2003, 25(6):471-480.
[2] 包陈, 蔡力勋, 钟斌. 两种合金钢的高温扭转疲劳性能[J]. 材料研究学报, 2007, 21(增刊):2-5. BAO C, CAI L X, ZHONG B. Torsional fatigue properties of two alloy steels at elevated temperature[J]. Chinese Journal of Materials Research, 2007, 21(Suppl.):2-5(in Chinese).
[3] 金磊, 夏慧琴. 扭转疲劳试验的探索性研究[J]. 材料工程, 1997(6):34-35. JIN L, XIA H Q. Eploring research on torsional fatigue properties in stainless steel, aluminum alloy and structural steel[J]. Journal of Materials Engineering, 1997(6):34-35(in Chinese).
[4] 钟斌, 何玉怀, 苏彬. 1Cr11Ni2W2MoV和16Ni3CrMoE两种钢的高温扭转疲劳性能研究[J]. 机械强度, 2004, 26(增刊):169-171. ZHONG B, HE Y H, SU B. High temperature torque fatigue properties of 1Cr11Ni2W2MoV and 16Ni3CrMoE[J]. Journal of Mechanical Strength, 2004, 26(S):169-171(in Chinese).
[5] 杨晓光, 黄佳, 王井科, 等. 定向凝固镍基高温合金缺口低循环疲劳性能及寿命预测[J]. 航空学报, 2013, 34(7):1596-1604. YANG X G, HUANG J, WANG J K, et al. Properties and life prediction of low cycle fatigue behavior on notched ds ni-based superalloy[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1596-1604(in Chinese).
[6] 丁智平, 曾军, 陈吉平. 镍基单晶合金多轴非对称循环加载应力弱化损伤与低周疲劳研究[J]. 航空学报, 2013, 34(12):2768-2776. DING Z P, ZENG J, CHEN J P. Study on stress-weakening damage and low cycle fatigue of Ni-based single crystal superalloy under multiaxial asymmetric loading[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2768-2776(in Chinese).
[7] 赵廷仕, 刘敦康, 纪惠君. 35钢低周扭转应变疲劳的研究[J]. 金属学报, 1987, 23(2):156-157. ZHAO T S, LIU D K, JI H J. Low cycle fatigue of steel 35 under torsional strain[J]. Acta Metallurgica Sinica, 1987, 23(2):156-157(in Chinese).
[8] 孙永健, 程琴, 唐雪艳. 变工况下汽轮机转子热应力分析及低周疲劳寿命计算[J]. 机械工程学报, 2013, 49(2):28-36. SUN Y J, CHENG Q, TANG X Y. Analysis of thermal stress and calculation of low-cycle fatigue life for a steam turbine under variable operating conditions[J]. Journal of Mechanic Engineering, 2013, 49(2):28-36(in Chinese).
[9] BROWN M W, MILLER K J. High temperature low cycle biaxial fatigue of two steels[J]. Fatigue & Fracture of Engineering Materials & Structures, 1979, 1(2):217-229.
[10] DAUNYS M, ESNAVⅡUS R. Investigation of low cycle asymmetric torsion[J]. Mechanika, 2010, 90:135.
[11] 杨丽红, 何蕴增, 吴国辉, 等. 基于扭转试验的大变形本构关系分析[J]. 哈尔滨工程大学学报, 2007, 27(6):816-820. YANG L H, HE Y Z, WU G H, et al. Analysis of large strain constitutive relationship based on torsion test[J]. Journal of Harbin Engineering University, 2007, 27(6):816-820(in Chinese).
[12] 杨丽红. 基于实心圆轴扭转实验的大变形本构关系研究[D]. 哈尔滨:哈尔滨工程大学, 2005:22-35. YANG L H. Research on large deformation constitutive relationship based on cylindrical shaft torsion test[D]. Harbin:Harbin Engineering University, 2005:22-35(in Chinese).
[13] 何蕴增, 邹广平. 实心圆轴扭转测定本构关系的概念和方法[J]. 实验力学, 2003, 18(3):426-432. HE Y Z, ZOU G P. The concept and method for determining the constitutive law of materials by torsion test with cylindrical specimens[J]. Journal of Experimental Mechanics, 2003, 18(3):426-432(in Chinese).
[14] 何蕴增, 邹广平. 实心圆试件扭转试验确定大应变本构关系[J]. 力学学报, 2001, 33(6):828-833. HE Y Z, ZOU G P. Determine finite-strain stress-strain relationship by torsion test with cylindrical specimens[J]. Acta Mechanica Sinica, 2001, 33(6):828-833(in Chinese).
[15] DECKER R F, FLOREEN S. Maraging steels-the first 30 years[J]. Maraging Steels:Recent Developments and Applications, 1988:1-38.
[16] 姜越, 尹钟大, 朱景川, 等. 超高强度马氏体时效钢的发展[J]. 特殊钢, 2004, 25(2):1-5. JIANG Y, YIN Z D, ZHU J C, et al. Development of ultra-high strength maraging steel[J]. Special Steel, 2004, 25(2):1-5(in Chinese).
[17] 姚迪, 蔡力勋, 包陈, 等. 基于试验与有限元耦合技术的延性材料全程单轴本构关系获取方法[J]. 固体力学学报, 2014, 35(3):226-240. YAO D, CAI L X, BAO C, et al. Determination of stress-strain curve of ductile materials by testing and finite element coupling method[J]. Chinese Journal of Solid Mechanics, 2014, 35(3):226-240(in Chinese).
[18] 陈辉, 蔡力勋, 姚迪, 等. 基于小尺寸材料试验与有限元分析的耦合方法获取材料力学性能[J]. 机械强度, 2014, 36(2):187-192. CHEN H, CAI L X, YAO D, et al. Obtaining material mechanical properties by coupling method based on tests of small size specimens and finite element analysis[J]. Journal of Mechanical Strength, 2014, 36(2):187-192(in Chinese).
[19] MCCLAFLIN D, FATEMI A. Torsional deformation and fatigue of hardened steel including mean stress and stress gradient effects[J]. International Journal of Fatigue, 2004, 26(7):773-784.
[20] SHAMSAEI N, FATEMI A. Deformation and fatigue behaviors of case-hardened steels in torsion:experiments and predictions[J]. International Journal of Fatigue, 2009, 31(8):1386-1396.
[21] WANG X G, GAO Z L, QIU B X, et al. Multi-axial fatigue of 2024-T4 aluminum alloy[J]. Chinese Journal of Mechanical Engineering, 2011, 24(2):195-201.
[22] JAHED H, VARVANI-FARAHANI A. Upper and lower fatigue life limits model using energy-based fatigue properties[J]. International Journal of Fatigue, 2006, 28(5):467-473. |