航空学报 > 2015, Vol. 36 Issue (10): 3241-3248   doi: 10.7527/S1000-6893.2015.0006

带边条翼导弹滚转稳定性分析

耿玺, 史志伟, 程克明, 龚正, 刘超   

  1. 南京航空航天大学 航空宇航学院, 南京 210016
  • 收稿日期:2014-11-13 修回日期:2014-12-30 出版日期:2015-10-15 发布日期:2015-02-11
  • 通讯作者: 史志伟, Tel: 025-84896464 E-mail: szwam@nuaa.edu.cn E-mail:szwam@nuaa.edu.cn
  • 作者简介:耿玺 男, 博士研究生。主要研究方向: 实验空气动力学, 非定常空气动力学, 流动控制。 Tel: 025-84892505 E-mail: greatgengxi@163.com;史志伟 男, 博士, 教授, 博士生导师。主要研究方向: 实验空气动力学, 非定常空气动力学, 流动控制。 Tel: 025-84896464 E-mail: szwam@nuaa.edu.cn
  • 基金资助:

    江苏省普通高校研究生科研创新计划(CXLX12_0134); 中央高校基本科研业务费专项资金

Rolling stability analysis of missile with strake wing

GENG Xi, SHI Zhiwei, CHENG Keming, GONG Zheng, LIU Chao   

  1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2014-11-13 Revised:2014-12-30 Online:2015-10-15 Published:2015-02-11
  • Supported by:

    Funding of Jiangsu Innovation Program for Graduate Education (CXLX12_0134); The Fundamental Research Funds for the Central Universities

摘要:

为了分析带边条翼导弹模型的非线性自由滚转运动及滚转稳定特性,采用理论分析与动态测力试验、滚转自由度释放测量试验相结合的方式,对低速来流条件下模型0°~60°迎角范围内的滚转运动、滚转稳定特性随迎角变化的规律进行了研究。在10°迎角时,模型在4个"+"形位置是滚转静稳定的并且在"+"形位置上滚转运动保持平衡;迎角大于20°的范围内滚转静稳定的平衡位置变到4个"×"形位置上;并且迎角为20°时模型在"×"形位置滚转保持平衡,迎角大于30°后模型产生滚转极限环自激振荡运动,迎角达到60°时模型的滚转运动发散演变为高速旋转的形式。研究结果表明:模型滚转运动的形式决定于滚转力矩的静、动稳定特性。

关键词: 导弹, 滚转运动, 滚转稳定性, 边条翼, 自由度释放

Abstract:

In order to study the nonlinear free rolling motion and rolling stability of a missile mounted with strake wing, different methods are used including the theoretical method, the dynamic force tests and the free-to-roll measurement. The free rolling motion and the changing of the rolling stability have been studied from the angle of attack(AOA) from 0° to 60° under the low speed free stream condition. At AOA of 10° the rolling statically stable positions are where the model looks like "+" shape and the model can keep stable at these positions after being released rolling free. When the angle of attack is higher than 20°, the rolling statically stable positions have changed to where the model is "×" shaped. And at AOA of 20° the model can keep rolling stable at the position where the model is "×" shaped. When the AOA is higher than 30°, the model generates the limit cycle oscillation itself at the positions where the model is "×" shaped. When the AOA reaches 60°, the rolling motion becomes spinning after the limit cycle oscillation diverges. The results indicate that the rolling motions are determined by the static and dynamic stability of rolling moment.

Key words: missile, rolling motion, rolling stability, strake wing, releasing of constraint freedom

中图分类号: