[1] Fan L, Zhang J X, Wu X X, et al. Optimum design of edge lateral support for large aperture lightweight primary mirror[J]. Optics and Precision Engineering, 2012, 20(10): 2207-2213 (in Chinese). 范磊, 张景旭, 吴小霞, 等. 大口径轻量化主镜边缘侧向支撑的优化设计[J]. 光学精密工程, 2012, 20(10): 2207-2213.[2] Liu S T, Hu R, Dong Z G, et al. Topologic optimization for configration design of web-skin-type ground strucutre based large-aperture space mirror[J]. Optics and Precision Engineering, 2013, 21(7): 1803-1810 (in Chinese). 刘书田, 胡瑞, 董志刚, 等. 基于筋板式基结构的大口径空间反射镜构型设计的拓扑优化方法[J]. 光学精密工程, 2013, 21(7): 1803-1810.[3] Zeng C M, Guo P J, Yu J C. Demonstration and analysis on correction of 0. 5 m ultra-thin mirror with active supports[J]. Optics and Precision Engineering, 2010, 18(3): 570-578 (in Chinese). 曾春梅, 郭培基, 余景池. 0.5 m 超薄镜主动支撑面形校正及实验[J]. 光学精密工程, 2010,18(3): 570-578.[4] Li H Z, Lin X D, Liu X Y, et al. Experiment system of 400 mm thin-mirror active optics[J]. Optics and Precision Engineering, 2009, 17(9): 2076-2083 (in Chinese). 李宏壮, 林旭东, 刘欣悦, 等. 400 mm薄镜面主动光学实验系统[J]. 光学精密工程, 2009, 17(9): 2076-2083.[5] Chen P C, Romeo R C. Advances in composite mirror and telescope technology[J]. Proceedings of SPIE, 2004,5382: 397-403.[6] Chen P C, Bowers C W, Content D A, et al. Advances in very lightweight composite mirror technology[J]. Optical Engineering, 2000, 39(9): 2320-2329.[7] Johannes K D, Robert H, von Mathias A, et al. Development and manufacture of an adaptive lightweight mirror for space application[J]. Smart Materials and Structures, 2003, 12(6): 1005-1016.[8] Chee C, Tong L, Steven G. A mixed model for adaptive composite plates with piezoelectric for anisotropic actuation[J]. Computers & Structures, 2000, 77(3): 253-268.[9] Chee C, Tong L, Steven G P. Static shape control of composite plates using a slope-displacement based algorithm[J]. AIAA Journal, 2002, 40(8): 1611-1618.[10] Moita J S, Martins P G, Soares C M M, et al. Optimal dynamic control of laminated adaptive structures using a higher order model and a genetic algorithm[J]. Computers & Structures, 2008, 86(3-5): 198-206.[11] Roy T, Chakraborty D. Optimal vibration control of smart fiber reinforced composite shell structures using improved genetic algorithm[J]. Journal of Sound and Vibration, 2009, 319(1-2): 15-40.[12] Bruch J C, Jr, Sloss J M, Adali S, et al. Optimal piezo-actuator locations/lengths and applied voltage for shape control of beams[J]. Smart Materials and Structures, 2000, 9(2): 205-211.[13] Andoh F, Washington G, Yoon H S, et al. Efficient shape control of distributed reflectors with discrete piezoelectric actuators[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(1): 3-15.[14] Deng N C, Zou Z Z. Static shape control of intelligent beam structure[J]. Chinese Journal of Applied Mechanics, 2003, 20(2): 129-132 (in Chinese). 邓年春, 邹振祝. 智能梁的静态形状控制[J]. 应用力学学报, 2003, 20(2): 129-132.[15] Tang J Y, Huang H, Xia R W, et al. Static shape control of adaptive structure using composite laminated piezoelectric element[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(2): 239-243 (in Chinese). 唐纪晔, 黄海, 夏人伟, 等. 压电层合板自适应结构的静力变形控制[J]. 北京航空航天大学学报, 2000, 26(2): 239-243.[16] Wang J, Yang Y D, Zhang J Y, et al. Investigation of piezoelectric actuator optimal configuration for structural vibration control[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 494-500 (in Chinese). 王军, 杨亚东, 张家应, 等. 面向结构振动控制的压电作动器优化配置研究[J]. 航空学报, 2012, 33(3): 494-500.[17] Mello L A M, Kiyono C Y, Nakasone P H, et al. Design of quasi-static piezoelectric plate based transducers by using topology optimization[J]. Smart Materials and Structures, 2014, 23(2): 1-12.[18] Kögl M, Silva E C N. Topology optimization of smart structures: Design of piezoelectric plate and shell actuators[J]. Smart Materials and Structures, 2005,14(2): 387-399.[19] Kang Z, Tong L. Topology optimization-based distribution design of actuation voltage in static shape control of plates[J]. Computers & Structures, 2008, 86(19-20): 1885-1893.[20] Masters I G, Evans K E. Models for the elastic deformation of honeycombs[J]. Composite Structures, 1996, 35(4): 403-422.[21] Mehta P K. Moment actuator influence function for flat circular deformable mirrors[J]. Advances in Optical Structure Systems, 1990, 29(10): 1213-1222.[22] Reddy J N. On laminated composite plates with integrated sensors and actuators[J]. Engineering Structures, 1999, 21(7): 568-593.[23] Gibson L J, Ashby M F, Schajer G S, et al. The mechanics of two-dimensional cellular materials[J]. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, 1982, 382(1782): 25-42.[24] Chen D H. Equivalent flexural and torsional rigidity of hexagonal honeycomb[J]. Composite Structures, 2011, 93(7): 1910-1917.[25] Paradies R, Hertwig M. Shape control of adaptive composite reflectors[J]. Composites Part B: Engineering, 1999, 30(1): 65-78.[26] Nelson J E, Lubliner J, Mast T S. Telescope mirror supports: plate deflections on point supports[J]. Advanced Technology Optical Telescopes, 1982, 332(10): 212-228.[27] Paradies R. Designing quasi-isotropic laminates with respect to bending[J]. Composites Science and Technology, 1996, 56(4): 461-472. |