[1] Elwany A H, Gebraeel N Z. Sensor-driven prognostic models for equipment replacement and spare parts inventory. IIE Transactions (Institute of Industrial Engineers), 2008, 40(7): 629-639. [2] Wang H, Pham H. Reliability and optimal maintenance. London: Springer-Verlag London Limited, 2006. [3] Dekker R. Applications of maintenance optimization models: a review and analysis. Reliability Engineering and System Safety, 1996, 51(3): 229-240. [4] Nakagawa T. Maintenance theory of reliability. London: Springer-Verlag London Limited, 2005. [5] Wang H. A survey of maintenance policies of deteriorating systems. European Journal of Operational Research, 2002, 139(3): 469-489. [6] Lu D F, Zuo H F, Cai J. Study on optimal maintenance of standby systems based on function inspection. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 660-665. (in Chinese) 吕德峰, 左洪福, 蔡景. 基于功能检测的备用系统维修优化研究. 航空学报, 2009, 30(4): 660-665. [7] Yang Y, Wang L C, Zou Y. Availability model of one-unit discrete time system with preventive maintenance. Acta Aeronautica et Astronautica Sinica, 2009, 30(1): 68-72. (in Chinese) 杨懿, 王立超, 邹云. 考虑预防性维修的离散时间单部件系统的可用度模型. 航空学报, 2009, 30(1): 68-72. [8] Jardine A K, Lin D, Banjevic D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 2006, 20(7): 1483-1510. [9] Pecht M G. Prognostics and health management of electronics. New Jersey: John Wiley & Sons, Inc., 2008. [10] Pecht M, Jaai R. A prognostics and health management roadmap for information and electronics-rich systems. Microelectronics Reliability, 2010, 50(3): 317-323. [11] Kaiser K A, Gebraeel N Z. Predictive maintenance management using sensor-based degradation models. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 2009, 39(4): 840-849. [12] Wu S J, Gebraeel N, Lawley M A, et al. A neural network integrated decision support system for condition-based optimal predictive maintenance policy. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 2007, 37(2): 226-236. [13] Cui J G, Zhao Y L, Dong S L, et al. Life prognostics for aero-generator based on genetic algorithm and ARMA model. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1506-1511. (in Chinese) 崔建国, 赵云龙, 董世良, 等. 基于遗传算法和ARMA模型的航空发电机寿命预测. 航空学报, 2011, 32(8): 1506-1511. [14] Huynh K T, Barros A, Berenguer C. Assessment of prognostic in maintenance decision-making for a deteriorating system under indirect condition monitoring. ESREL 2010, 2010: 1-8. [15] Sandborn P A, Wilkinson C. A maintenance planning and business case development model for the application of prognostics and health management (PHM) to electronic systems. Microelectronics Reliability, 2007, 47(12): 1889-1901. [16] Scanff E, Feldman K L, Ghelam S, et al. Life cycle cost impact of using prognostic health management (PHM) for helicopter avionics. Microelectronics Reliability, 2007, 47(12): 1857-1864. [17] Feldman K, Jazouli T, Sandborn P A. A methodology for determining the return on investment associated with prognostics and health management. IEEE Transactions on Reliability, 2009, 58(2): 305-316. [18] Wang W, Pecht M. Economic analysis of canary-based prognostics and health management. IEEE Transactions on Industrial Electronics, 2011, 58(7): 3077-3089. [19] Vichare N M, Pecht M G. Prognostics and health management of electronics. IEEE Transactions on Components and Packaging Technologies, 2006, 29(1): 222-229. [20] Pecht M G, Kapur K C. Reliability engineering. Kang R, translated. Beijing: Publishing House of Electronics Industry, 2011. (in Chinese) Pecht M G, Kapur K C. 可靠性工程基础. 康锐,译.北京: 电子工业出版社, 2011. [21] Zeng S K, Pecht M G, Wu J. Status and perspec-tives of prognostics and health management technologies. Acta Aeronautica et Astronautica Sinica, 2005, 26(5): 626-632. (in Chinese) 曾声奎, Pecht M G, 吴际. 故障预测与健康管理(PHM)技术的现状与发展. 航空学报, 2005, 26(5): 626-632. [22] Mishra S, Pecht M G, Goodman D L. In-situ sensors for product reliability monitoring. The International Society for Optical Engineering, 2002: 10-19. |