[1] Gromov V. Physical and mechanical properties of lunar and planetary soils[J]. Earth Moon and Planets, 1999, 80(1-3): 51-72.
[2] Moore H J, Clow G D, Hutton R E. A summary of viking sample trench analyses for angles of internal friction and cohesion[J]. Journal of Geophysical Research, 1982, 87: 10043-10050.
[3] Hong W. Modeling, estimation, and control of robot-soil interactions. Massachusetts, USA: Doctoral Dissertation of Massachusetts Institute of Technology, 2001.
[4] The Rover Team. Characterization of the Martian surface deposits by the Mars pathfinder rover, sojourner[J]. Science, 1997, 278(5344): 1765-1768.
[5] Arvidson R E, Anderson R C, Haldemann A F C, et al. Physical properties and localization investigations associated with the 2003 Mars exploration rovers[J]. Journal of Geophysical Research Planets, 2003, 108(E12): 8070.
[6] Arvidson R E, Anderson R C, Bartlett P, et al. Localization and physical properties experiments conducted by Spirit at Gusev crater[J]. Science, 2004, 305(5685): 821-824.
[7] Arvidson R E, Anderson R C, Bartlett P, et al. Localization and physical property experiments conducted by Opportunity at Meridiani planum[J]. Science, 2004, 306(5702): 1730-1733.
[8] Apostolopoulos D S. Analytical configuration of wheeled robotics locomotion. The Robotics Institute of Carnegie Mellon University Technical Report CMU-RI-TR-01-08, 2001.
[9] Patel N, Ellery A, Allouis E, et al. Rover mobility performance evaluation tool(RMPET): a systematic tool for rover chassis evaluation via application of Bekker theory//Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation. 2004: 251-258.
[10] Sohl G, Jain A. Wheel-terrain contact modeling in the ROAMS planetary rover simulation//Proceedings of IDETCV05 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2005:1-9.
[11] Ishigami G, Miwa A, Nagatani K, et al. Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil[J]. Journal of Field Robotics, 2007, 24(3): 233-250.
[12] Ishigami G, Nagatani K, Yoshida K. Path planning for planetary exploration rovers and its evaluation based on wheel slip dynamics//IEEE International Conference on Robotics and Automation. 2007: 2361-2366.
[13] 孙刚, 高峰, 李雯. 地面力学及其在星球探测研究中的应用[J]. 力学进展, 2007, 37(3): 453-464. Sun Gang, Gao Feng, Li Wen. Terramechanics and its application in planetary exploration[J]. Advances in Mechanics, 2007, 37(3): 453-464. (in Chinese)
[14] Shibly H, Iagnemma K, Dubowsky S. An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers[J]. Journal of Terramechanics, 2005, 42(1): 1-13.
[15] Iagnemma K, Kang S, Shibly H, et al. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers[J]. IEEE Transactions on Robotics, 2004, 20(5): 921-927.
[16] Hutangkabodee S, Zweiri Y H, Seneviratne L D, et al. Performance prediction of a wheeled vehicle on unknown terrain using identified soil parameters //IEEE International Conference on Robotics and Automation. 2006: 3356-3361.
[17] 崔平远,刘冰,居鹤华.月壤力学参数在线估计算法研究[J].计算机测量与控制, 2008, 16(2): 245-247. Cui Pingyuan, Liu Bing, Ju Hehua. Research on mechanical parameters online estimation of lunar soil[J]. Computer Measurement and Control, 2008, 16(2): 245-247.(in Chinese)
[18] Ding L, Yoshida K, Nagatani K, et al. Parameter identification for planetary soil based on decoupled analytical wheel-soil interaction terramechanics model//IEEE/RSJ International Conference on Intelligent Robots and Systems. 2009: 4122-4127.
[19] 丁亮,高海波,邓宗全, 等. 基于应力分布的月球车轮地相互作用地面力学模型[J].机械工程学报, 2009, 45(7): 49-55. Ding Liang, Gao Haibo, Deng Zongquan, et al. Terramechanics model for wheel-terrain interaction of lunar rover based on stress distribution [J]. Journal of Mechanical Engineering, 2009, 45(7): 49-55.(in Chinese)
[20] 丁亮. 月/星球车轮地作用地面力学模型及其应用研究. 哈尔滨: 哈尔滨工业大学机电工程学院, 2009. Ding Liang. Wheel-soil interaction terramechanics for lunar/planetary exploration rovers: modeling and application. Harbin: School of Mechatronic Engineering, Harbin Institute of Technology, 2009.(in Chinese)
[21] Bekker G. Introduction to terrain—vehicle systems[M]. Michigan: University of Michigan Press, 1969.
[22] Janosi Z, Hanamoto B. Analytical determination of drawbar pull as a function of slip for tracked vehicle in deformable soils//Proceedings of the 1st International Conference of ISTVS. Torino: International Society for Terrain-Vehicle Systems, 1961: 707-726.
[23] Ding L, Gao H B, Deng Z Q, et al. Experimental study and analysis on driving wheels’ performance for planetary exploration rovers moving in deformable soil[J]. Journal of Terramechanics, 2011, 48(1): 27-45.
[24] Ding L, Gao H B, Deng Z Q, et al. Wheel slip-sinkage and its prediction model of lunar rover[J]. Journal of Central South University Technology, 2010, 17(1): 129-135.
[25] Ding L, Gao H B, Deng Z Q. Slip ratio for lugged wheel of lunar rover in deformable soil: definition and estimation//IEEE/RSJ International Conference on Intelligent Robots and Systems. 2009: 3343-3348.
[26] Wong J Y, Reece A R. Prediction of rigid wheel performance based on analysis of soil-wheel stresses, Part I: performance of driven rigid wheels[J]. Journal of Terramechanics, 1967, 4(1): 81-98.
[27] 邓宗全, 丁亮, 高海波, 等. 月壤特性对月球车轮地相互作用力学的影响[J]. 哈尔滨工业大学学报, 2010, 42(11): 1724-1729. Deng Zongquan, Ding Liang, Gao Haibo, et al. Influence of soil properties on lunar rover’s wheel-soil interaction mechanics[J]. Journal of Harbin Institute of Technology, 2010, 42(11): 1724-1729. (in Chinese) |