航空学报 > 2011, Vol. 32 Issue (3): 497-506   doi: CNKI:11-1929/V.20101213.1757.010

基于高斯混合概率假设密度滤波的扫描型光学传感器像平面多目标跟踪算法

盛卫东, 许丹, 周一宇, 安玮, 龙云利   

  1. 国防科学技术大学 电子科学与工程学院, 湖南 长沙 410073
  • 收稿日期:2010-06-28 修回日期:2010-07-29 出版日期:2011-03-25 发布日期:2011-03-24
  • 作者简介:盛卫东(1981- ) 男,博士研究生。主要研究方向:多传感器多目标跟踪、分布式融合、空间信息对抗等。 Tel: 0731-84573489 E-mail: shengweidong1111@sohu.com许丹(1979- ) 男,博士,讲师。主要研究方向:目标识别、综合电子战系统与技术、无源定位技术等。 Tel: 0731-84573489 E-mail: stfan79@yahoo.com.cn周一宇(1948- ) 男,博士,教授,博士生导师。主要研究方向:综合电子战系统理论、无源定位理论与技术、雷达数据处理、电子信息系统仿真等。 Tel: 0731-84573489 E-mail: zhouyiyu@sohu.com安玮(1969- ) 女,博士,教授,博士生导师。主要研究方向:综合电子战系统与技术、空间信息处理等。 Tel: 0731-84573489 E-mail: nudtanwei@tom.com

Gaussian-mixture Probability Hypothesis Density Filter Based Multitarget Tracking Algorithm for Image Plane of Scanning Optical Sensor

SHENG Weidong, XU Dan, ZHOU Yiyu, AN Wei, LONG Yunli   

  1. College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • Received:2010-06-28 Revised:2010-07-29 Online:2011-03-25 Published:2011-03-24

摘要: 高斯混合概率假设密度(GM-PHD)滤波是一种基于随机有限集理论的次优贝叶斯多目标跟踪方法,本文研究了该算法在扫描型光学传感器像平面的多目标跟踪问题。针对典型的锥扫模式和推扫模式,根据其扫描特性建立目标的运动模型和测量模型。介绍高斯混合概率假设密度滤波的基本原理,针对原算法在强杂波环境中的低效率问题,借鉴传统多目标跟踪方法中的波门技术,提出相应的改进措施。最后构建包含交叉目标、并行目标和相对运动目标等情况的多目标场景,对两种扫描模式分别进行了Monte Carlo仿真,结果表明本文提出的算法能够适应目标个数变化,抑制杂波的能力强,且改进后算法效率提高了约10倍。

关键词: 随机有限集, 概率假设密度, 贝叶斯方法, 目标跟踪, 光学传感器

Abstract: Gaussian-mixture probability hypothesis density(GM-PHD) filter is a suboptimal Bayesian method for multitarget tracking based on random finite Set theory. This article proposes a GM-PHD based multitarget tracking algorithm for the image plane of a scanning optical sensor. By analyzing the scan characteristics, a target dynamic model and an observation model are established respectively for the typical cone scan type and shave scan type. The principle of GM-PHD is introduced. To handle the low efficiency problem of the original GM-PHD in high clutter density circumstances, some improvements are presented by using the gating technology in traditional multitarget tracking methods. Finally, A multitarget scenario is set up, which contains crossing targets, parallel targets and approaching targets, Monte Carlo simulations are used for the two scan types mentioned above, and the results show that the new algorithm is able to adapt to time-varying number of targets, depress clutters strongly, and enhance efficiency by 10 times as compared with the original method.

Key words: random finite set, probability hypothesis density, Bayesian methods, target tracking, optical sensor

中图分类号: