| 1 |
孙聪. 从空战制胜机理演变看未来战斗机发展趋势[J]. 航空学报, 2021, 42(8): 525826.
|
|
SUN C. Development trend of future fighter: A review of evolution of winning mechanism in air combat[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525826 (in Chinese).
|
| 2 |
DARPA. ACE program’s AI agent transition from simulation to live flight [EB/OL]. (2023-02-13)[2024-04-27]. .
|
| 3 |
孙智孝, 杨晟琦, 朴海音, 等. 未来智能空战发展综述[J]. 航空学报, 2021, 42(8): 525799.
|
|
SUN Z X, YANG S Q, PIAO H Y, et al. A survey of air combat artificial intelligence[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525799 (in Chinese).
|
| 4 |
XU G Y, LIU Q, ZHANG H. The application of situation function in differential game problem of the air combat[C]∥2018 Chinese Automation Congress (CAC). Piscataway: IEEE Press, 2018: 1190-1195.
|
| 5 |
PARK H, LEE B Y, TAHK M J, et al. Differential game based air combat maneuver generation using scoring function matrix[J]. International Journal of Aeronautical and Space Sciences, 2016, 17(2): 204-213.
|
| 6 |
ZHENG H Y, DENG Y, HU Y. Fuzzy evidential influence diagram and its evaluation algorithm[J]. Knowledge-Based Systems, 2017, 131: 28-45.
|
| 7 |
PAN Q, ZHOU D Y, HUANG J C, et al. Maneuver decision for cooperative close-range air combat based on state predicted influence diagram[C]∥2017 IEEE International Conference on Information and Automation (ICIA). Piscataway: IEEE Press, 2017: 726-731.
|
| 8 |
ZHENG Z Q, DUAN H B. UAV maneuver decision-making via deep reinforcement learning for short-range air combat[J]. Intelligence Robotics, 2023, 3(1): 76-94.
|
| 9 |
傅莉, 谢福怀, 孟光磊, 等. 基于滚动时域的无人机空战决策专家系统[J]. 北京航空航天大学学报, 2015, 41(11): 1994-1999.
|
|
FU L, XIE F H, MENG G L, et al. An UAV air-combat decision expert system based on receding horizon control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 1994-1999 (in Chinese).
|
| 10 |
王锐平, 高正红. 无人机空战仿真中基于机动动作库的决策模型[J]. 飞行力学, 2009, 27(6): 72-75, 79.
|
|
WANG R P, GAO Z H. Research on decision system in air combat simulation using maneuver library[J]. Flight Dynamics, 2009, 27(6): 72-75, 79 (in Chinese).
|
| 11 |
王炫, 王维嘉, 宋科璞, 等. 基于进化式专家系统树的无人机空战决策技术[J]. 兵工自动化, 2019, 38(1): 42-47.
|
|
WANG X, WANG W J, SONG K P, et al. UAV air combat decision based on evolutionary expert system tree[J]. Ordnance Industry Automation, 2019, 38(1): 42-47 (in Chinese).
|
| 12 |
李高垒, 马耀飞. 基于深度网络的空战态势特征提取[J]. 系统仿真学报, 2017, 29(S1): 98-105.
|
|
LI G L, MA Y F. Feature extraction algorithm of air combat situation based on deep neural networks[J]. Journal of System Simulation, 2017, 29(S1): 98-105 (in Chinese).
|
| 13 |
TENG T H, TAN A H, TAN Y S, et al. Self-organizing neural networks for learning air combat maneuvers[C]∥The 2012 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2012: 1-8.
|
| 14 |
YANG Q M, ZHANG J D, SHI G Q, et al. Maneuver decision of UAV in short-range air combat based on deep reinforcement learning[J]. IEEE Access, 2020, 8: 363-378.
|
| 15 |
LIU P, MA Y F. A deep reinforcement learning based intelligent decision method for UCAV air combat[C]∥17th Asia Simulation Conferenve. Melaka: Federation of Asian Simulation Societies, 2017: 274-286.
|
| 16 |
PIAO H Y, SUN Z X, MENG G L, et al. Beyond-visual-range air combat tactics auto-generation by reinforcement learning[C]∥2020 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2020: 1-8.
|
| 17 |
付宇阳, 邓向阳, 朱子强, 等. 基于价值滤波的空战机动决策方法[J]. 航空学报, 2023, 44(22): 628871.
|
|
FU Y Y, DENG X Y, ZHU Z Q, et al. Value-filter based air-combat maneuvering optimization[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 628871 (in Chinese).
|
| 18 |
Koren Air Force. F-16C basic employment manual[R]. Seoul: Koren, 2005.
|
| 19 |
秦玮, 马雯, 张楠. 某大机动无人机基于飞行任务的敏捷性评估飞行科目设计与仿真[J]. 测控技术, 2020, 39(11): 119-125.
|
|
QIN W, MA W, ZHANG N. Design and simulation of flight courses for agility evaluation of high maneuver UAV based on flight mission[J]. Measurement & Control Technology, 2020, 39(11): 119-125 (in Chinese).
|
| 20 |
王忠俊, 高浩. 关于飞机功能敏捷性尺度的计算[J]. 飞行力学, 1994, 12(2): 15-20.
|
|
WANG Z J, GAO H. On the calculation of fighter functional agility metrics[J]. Flight Dynamics, 1994, 12(2): 15-20 (in Chinese).
|
| 21 |
方伟, 王玉佳, 徐涛, 等. 航空兵智能决策模型的评估方法[J]. 兵器装备工程学报, 2021, 42(8): 126-132.
|
|
FANG W, WANG Y J, XU T, et al. Research on evaluation method of aviation intelligent decision model[J]. Journal of Ordnance Equipment Engineering, 2021, 42(8): 126-132 (in Chinese).
|
| 22 |
BOYD J R. The essence of winning and losing [EB/OL]. (2016-03-13)[2024-04-23]. .
|
| 23 |
冯宇鹏, 郭强, 赵创新, 等. 一种基于试飞数据的飞机稳定盘旋性能极限修正方法: CN114676501A[P]. 2022-06-28.
|
|
FENG Y P, ZHAO Q, ZHAO C X, et al. A method for correcting the limit of stable hovering performance of aircraft based on test flight data: CN114676501A[P]. 2022-06-28 (in Chinese).
|
| 24 |
邱福生, 魏闯, 院老虎. 基于试飞数据的固定翼飞机盘旋性能仿真分析技术[J]. 科学技术与工程, 2019, 19(30): 348-353.
|
|
QIU F S, WEI C, YUAN L H. Simulation and analysis technology of fixed-wing aircraft circling performance based on flight test data[J]. Science Technology and Engineering, 2019, 19(30): 348-353 (in Chinese).
|