1 |
孙智孝, 杨晟琦, 朴海音, 等. 未来智能空战发展综述[J]. 航空学报, 2021, 42(8): 525799.
|
|
SUN Z X, YANG S Q, PIAO H Y, et al. A survey of air combat artificial intelligence[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525799 (in Chinese).
|
2 |
GETZ W M, PACHTER M. Two-target pursuit-evasion differential games in the plane[J]. Journal of Optimization Theory and Applications, 1981, 34(3): 383-403.
|
3 |
GENG W X, KONG F E, MA D Q. Study on tactical decision of UAV medium-range air combat[C]∥ The 26th Chinese Control and Decision Conference. Piscataway: IEEE Press, 2014: 135-139.
|
4 |
VIRTANEN K, RAIVIO T, HAMALAINEN R P. Modeling pilot’s sequential maneuvering decisions by a multistage influence diagram[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 665-677.
|
5 |
LI B, LIANG S Y, TIAN L Y, et al. Intelligent aircraft maneuvering decision based on CNN[C]∥ Proceedings of the 3rd International Conference on Computer Science and Application Engineering. New York: ACM, 2019: 1–5.
|
6 |
周攀, 黄江涛, 章胜, 等. 基于深度强化学习的智能空战决策与仿真[J]. 航空学报, 2023, 44(4): 126731.
|
|
ZHOU P, HUANG J T, ZHANG S, et al. Intelligent air combat decision making and simulation based on deep reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126731 (in Chinese).
|
7 |
李文韬,方峰,王振亚,等.引入混合超网络改进MADDPG的双机编队空战自主机动决策[J/OL]. 航空学报,(2023-11-02)[2023-11-28]. .
|
|
LI W T, FANG F, WANG Z Y, et al. Intelligent maneuvering decision-making in two-UCAVs cooperative air combat based on improved MADDPG with hybird hyper network[J/OL]. Acta Aeronautica et Astronautica Sinica,(2023-11-02)[2023-11-28]..
|
8 |
李曾琳, 李波, 白双霞, 等. 基于AM-SAC的无人机自主空战决策[J]. 兵工学报, 2023, 44(9): 2849-2858.
|
|
LI Z L, LI B, BAI S X, et al. UAV autonomous air combat decision-making based on AM-SAC[J]. Acta Armamentarii, 2023, 44(9): 2849-2858 (in Chinese).
|
9 |
符小卫, 徐哲, 朱金冬, 等. 基于PER-MATD3的多无人机攻防对抗机动决策[J]. 航空学报, 2023, 44(7): 327083.
|
|
FU X W, XU Z, ZHU J D, et al. Maneuvering decision-making of multi-UAV attack-defence confrontation based on PER-MATD3[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 327083 (in Chinese)
|
10 |
TOPIN N, MILANI S, FANG F, et al. Iterative bounding MDPs: Learning interpretable policies via non-interpretable methods[C]∥ Proceedings of the AAAI Conference on Artificial Intelligence. 2021.
|
11 |
SILVA A, GOMBOLAY M, KILLIAN T, et al. Optimization methods for interpretable differentiable decision trees applied to reinforcement learning[C]∥Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. 2020: 1855--1865.
|
12 |
LANDAJUELA M, PETERSEN B K, KIM S, et al. Discovering symbolic policies with deep reinforcement learning[C]∥ Proceedings of the 38th International Conference on Machine Learning. 2021: 5979--5989.
|
13 |
DANESH M H, KOUL A, FERN A, et al. Re-understanding finite-state representations of recurrent policy networks[C]∥Proceedings of the 38th International Conference on Machine Learning. 2021: 2388-2397.
|
14 |
GREYDANUS S, KOUL A, DODGE J, et al. Visualizing and understanding Atari agents[C]∥Proceedings of the 35th International Conference on Machine Learning. 2018: 1792-1801.
|
15 |
BASTANI O, PU Y W, SOLAR-LEZAMA A. Verifiable reinforcement learning via policy extraction[C]∥ Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018: 2499-2509.
|
16 |
TJOA E, GUAN C T. A survey on eXplainable Artificial Intelligence (XAI): Toward medical XAI[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(11): 4793-4813.
|
17 |
TOPIN N, VELOSO M. Generation of policy-level explanations for reinforcement learning[C]∥ Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. 2019: 2514-2521.
|
18 |
高阳阳, 余敏建, 韩其松, 等. 基于改进共生生物搜索算法的空战机动决策[J]. 北京航空航天大学学报, 2019, 45(3): 429-436.
|
|
GAO Y Y, YU M J, HAN Q S, et al. Air combat maneuver decision-making based on improved symbiotic organisms search algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 429-436 (in Chinese).
|
19 |
杜海文, 崔明朗, 韩统, 等. 基于多目标优化与强化学习的空战机动决策[J]. 北京航空航天大学学报, 2018, 44(11): 2247-2256.
|
|
DU H W, CUI M L, HAN T, et al. Maneuvering decision in air combat based on multi-objective optimization and reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2247-2256 (in Chinese).
|
20 |
李永丰, 史静平, 章卫国, 等. 深度强化学习的无人作战飞机空战机动决策[J]. 哈尔滨工业大学学报, 2021, 53(12): 33-41.
|
|
LI Y F, SHI J P, ZHANG W G, et al. Maneuver decision of UCAV in air combat based on deep reinforcement learning[J]. Journal of Harbin Institute of Technology, 2021, 53(12): 33-41 (in Chinese).
|
21 |
LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[DB/OL]. arXiv: , 2015.
|
22 |
GUO W B, WU X, KHAN U, et al. EDGE: Explaining deep reinforcement learning policies[C]∥Advances in Neural Information Processing Systems. 2021: 12222-12236.
|
23 |
DUVENAUD D, NICKISCH H, RASMUSSEN C. Additive Gaussian processes[C]∥ Proceedings of the 24th International Conference on Neural Information Processing Systems. New York: ACM, 2011: 226-234.
|