| [1] |
BANDARA W G C, NAIR N G, PATEL V M. DDPM-CD: Remote sensing change detection using denoising diffusion probabilistic models[DB/OL]. arXiv preprint: 2206.11892, 2022.
|
| [2] |
赵军利, 李向英, 陈占龙, 等. 基于遥感影像军事地质信息提取及应用研究现状[J]. 地质论评, 2025, 71(3): 848-866.
|
|
ZHAO J L, LI X Y, CHEN Z L, et al. Current research status on the extraction and application of military geological information based on remote sensing images[J]. Geological Review, 2025, 71(3): 848-866 (in Chinese).
|
| [3] |
秦杨, 黄孝森. 遥感技术在全域土地综合整治中的应用[J]. 智能建筑与智慧城市, 2025(5): 43-45.
|
|
QIN Y, HUANG X S. The application of remote sensing technology in the whole land comprehensive consolidation[J]. Intelligent Building & Smart City, 2025(5): 43-45 (in Chinese).
|
| [4] |
刘延芳, 佘佳宇, 袁秋帆, 等. 无人机遥感图像实时小目标检测方法[J]. 航空学报, 2024, 45(14): 630119.
|
|
LIU Y F, SHE J Y, YUAN Q F, et al. Real-time small target detection networks for UAV remote sensing[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 630119 (in Chinese).
|
| [5] |
王子玲, 熊振宇, 杨璐铖, 等. AIS和光学遥感图像引导的星载SAR舰船目标识别网络[J]. 航空学报, 2024, 45(2): 328672.
|
|
WANG Z L, XIONG Z Y, YANG L C, et al. Spaceborne SAR ship target recognition network guided by AIS and optical remote sensing images[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 328672 (in Chinese).
|
| [6] |
LEI S, SHI Z W, ZOU Z X. Super-resolution for remote sensing images via local-global combined network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1243-1247.
|
| [7] |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2017: 1132-1140.
|
| [8] |
LI Y D, MAVROMATIS S, ZHANG F, et al. Single-image super-resolution for remote sensing images using a deep generative adversarial network with local and global attention mechanisms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 3000224.
|
| [9] |
LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 105-114.
|
| [10] |
DHARIWAL P, NICHOL A. Diffusion models beat GANS on image synthesis[J]. Advances in Neural Information Processing Systems, 2021, 34, 8780-8794.
|
| [11] |
YANG L, LIU J, HONG S, et al. Improving diffusion-based image synthesis with context prediction[C]∥Proceedings of the 37th International Conference on Neural Information Processing Systems, 2024.
|
| [12] |
HU E J, SHEN Y, WALLIS P, et al. Lora: Low-rank adaptation of large language models[C]∥International Conference on Learning Representations 2022.
|
| [13] |
ZHANG S, YUAN Q Q, LI J, et al. Scene-adaptive remote sensing image super-resolution using a multiscale attention network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4764-4779.
|
| [14] |
PAN Z X, MA W, GUO J Y, et al. Super-resolution of single remote sensing image based on residual dense backprojection networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7918-7933.
|
| [15] |
XIAO Y, SU X, YUAN Q Q, et al. Satellite video super-resolution via multiscale deformable convolution alignment and temporal grouping projection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5610819.
|
| [16] |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 10012-10022.
|
| [17] |
XU Y Y, LUO W, HU A N, et al. TE-SAGAN: An improved generative adversarial network for remote sensing super-resolution images[J]. Remote Sensing, 2022, 14(10): 2425.
|
| [18] |
HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[J]. Advances in neural information processing systems, 2020, 33: 6840-6851.
|
| [19] |
LIU J Z, YUAN Z Q, PAN Z Y, et al. Diffusion model with detail complement for super-resolution of remote sensing[J]. Remote Sensing, 2022, 14(19): 4834.
|
| [20] |
付奕博, 谢东海, 王志博, 等. 基于条件控制扩散模型的遥感图像超分辨率增强算法[J]. 地球信息科学学报, 2024, 26(10): 2384-2393.
|
|
FU Y B, XIE D H, WANG Z B, et al. A super-resolution enhancement algorithm for remote sensing images using conditional controlled diffusion models[J]. Journal of Geo-Information Science, 2024, 26(10): 2384-2393 (in Chinese).
|
| [21] |
HAN L T, ZHAO Y C, LV H Y, et al. Enhancing remote sensing image super-resolution with efficient hybrid conditional diffusion model[J]. Remote Sensing, 2023, 15(13): 3452.
|
| [22] |
XIAO Y, YUAN Q Q, JIANG K, et al. EDiffSR: An efficient diffusion probabilistic model for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 62: 5601514.
|
| [23] |
ALI A M, BENJDIRA B, KOUBAA A, et al. TESR: Two-stage approach for enhancement and super-resolution of remote sensing images[J]. Remote Sensing, 2023, 15(9): 2346.
|
| [24] |
ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 10674-10685.
|
| [25] |
LI X W, SUN A T, ZHAO M K, et al. Multi-intention oriented contrastive learning for sequential recommendation[C]∥Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 411-419.
|
| [26] |
YE M, ZHANG X, YUEN P C, et al. Unsupervised embedding learning via invariant and spreading instance feature[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 6203-6212.
|
| [27] |
WU H Y, QU Y Y, LIN S H, et al. Contrastive learning for compact single image dehazing[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2021: 10551-10560.
|
| [28] |
WANG Z, LU C, WANG Y, et al. Prolificdreamer: High-fidelity and diverse text-to-3D generation with variational score distillation[J]. Advances in Neural Information Processing Systems, 2023, 36: 8406-8441.
|
| [29] |
YIN T W, GHARBI M, ZHANG R, et al. One-step diffusion with distribution matching distillation[C]∥2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2024: 6613-6623.
|
| [30] |
POOLE B, JAIN A, BARRON J T, et al. Dreamfusion: Text-to-3d using 2D diffusion[J]. arXiv preprint: 2209.14988, 2022.
|
| [31] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint: 1409.1556, 2014.
|
| [32] |
DING K Y, MA K D, WANG S Q, et al. Image quality assessment: Unifying structure and texture similarity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(5): 2567-2581.
|
| [33] |
LI J, CAO J, ZOU Z, et al. Unleashing the power of one-step diffusion based image super-resolution via a large-scale diffusion discriminator[DB/OL]. arXiv preprint: 2410.04224, 2024.
|
| [34] |
DING J, XUE N, XIA G S, et al. Object detection in aerial images: A large-scale benchmark and challenges[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7778-7796.
|
| [35] |
XIA G S, HU J W, HU F, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965-3981.
|
| [36] |
CHENG G, ZHOU P C, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415.
|
| [37] |
ROTTENSTEINER F, SOHN G, JUNG J, et al. The ISPRS benchmark on urban object classification and 3D building reconstruction[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012(3): 293-298.
|
| [38] |
LONG Y, GONG Y P, XIAO Z F, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486-2498.
|
| [39] |
WANG X T, XIE L B, DONG C, et al. Real-ESRGAN: Training real-world blind super-resolution with pure synthetic data[C]∥2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Piscataway: IEEE Press, 2021: 1905-1914.
|
| [40] |
KINGMA DP. Adam: A method for stochastic optimization[DB/OL]. arXiv preprint: 1412.6980, 2014.
|
| [41] |
HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. Gans trained by a two time-scale update rule converge to a local Nash equilibrium[J]. Advances in Neural Information Processing Systems, 2017, 30, 6626-6637.
|
| [42] |
ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 586-595.
|
| [43] |
MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212.
|
| [44] |
KE J J, WANG Q F, WANG Y L, et al. MUSIQ: Multi-scale image quality transformer[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 5128-5137.
|
| [45] |
WANG J Y, CHAN K C K, LOY C C. Exploring CLIP for assessing the look and feel of images[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, 2023.
|
| [46] |
YANG S D, WU T H, SHI S W, et al. MANIQA: Multi-dimension attention network for No-reference image quality assessment[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2022: 1190-1199.
|
| [47] |
SAHARIA C, HO J, CHAN W, et al. Image super-resolution via iterative refinement[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4713-4726.
|
| [48] |
ZHU C, LIU Y, HUANG S, et al. Taming a diffusion model to revitalize remote sensing image super-resolution[J]. Remote Sensing, 2025, 17(8): 1348.
|
| [49] |
WANG J, FAN Q, ZHANG Q, et al. Hero-SR: One-step diffusion for super-resolution with human perception priors[J]. arXiv preprint: 2412.07152, 2024.
|
| [50] |
SHI S W, BAI Q Y, CAO M D, et al. Region-adaptive deformable network for image quality assessment[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2021: 324-333.
|
| [51] |
LEI S, SHI Z W. Hybrid-scale self-similarity exploitation for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5401410.
|
| [52] |
XIAO Y, YUAN Q Q, JIANG K, et al. TTST: A top-k token selective transformer for remote sensing image super-resolution[J]. IEEE Transactions on Image Processing, 2024, 33: 738-752.
|
| [53] |
LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: image restoration using swin transformer[C]∥2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Piscataway: IEEE Press, 2021: 1833-1844.
|
| [54] |
LEI S, SHI Z W, MO W J. Transformer-based multistage enhancement for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5615611.
|
| [55] |
MENG F N, CHEN Y J, JING H Y, et al. A conditional diffusion model with fast sampling strategy for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5408616.
|
| [56] |
LIN X Q, HE J W, CHEN Z Y, et al. DiffBIR: Toward blind image restoration withGenerative diffusion prior[C]∥Computer Vision-ECCV 2024. Cham: Springer, 2025: 430-448.
|