1 |
Euroconsult digital platform. Prospects for the Small Satellite Market[EB/OL]. (2022-07-01)[2024-03-03]. .
|
2 |
ZHANG W, WANG X H, CUI W, et al. Self-induced collision risk of the Starlink constellation based on long-term orbital evolution analysis[J]. Astrodynamics, 2023, 7(4): 445-453.
|
3 |
ZHANG Y, LI B, LIU H K, et al. An analysis of close approaches and probability of collisions between LEO resident space objects and mega constellations[J]. Geo-spatial Information Science, 2022, 25(1): 104-120.
|
4 |
WEN C X, QIAO D. Calculating collision probability for long-term satellite encounters through the reachable domain method[J]. Astrodynamics, 2022, 6(2): 141-159.
|
5 |
泉浩芳, 张小达, 周玉霞, 等. 空间碎片减缓策略分析及相关政策和标准综述[J]. 航天器环境工程, 2019, 36(1): 7-14.
|
|
QUAN H F, ZHANG X D, ZHOU Y X, et al. Space debris mitigation strategies, the related policies and standards[J]. Spacecraft Environment Engineering, 2019, 36(1): 7-14 (in Chinese).
|
6 |
任书仪. 面向低轨卫星星座的轨道演化分析及碰撞风险研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2022: 111-113.
|
|
REN S Y. Orbit evolution analysis and collision risk research for LEO satellite constellation[D].Beijing: National Space Science Center, Chinese Academy of Sciences, 2022: 111-113. (in Chinese).
|
7 |
WALKER R, STOKES P H, WILKINSON J E, et al. Long-term collision risk prediction for low earth orbit satellite constellations[J]. Acta Astronautica, 2000, 47(2-9): 707-717.
|
8 |
秦子浩, 方进勇. 巨型小卫星星座对空间碎片环境的影响研究[J]. 空间电子技术, 2021, 18(1): 87-92.
|
|
QIN Z H, FANG J Y. Study on the effects from large constellations on space debris environment[J]. Space Electronic Technology, 2021, 18(1): 87-92 (in Chinese).
|
9 |
KESSLER D J, JOHNSON N L, LIOU J C, et al. The Kessler syndrome: implications to future space operations[J]. Advances in the Astronautical Sciences, 2010, 137: 47-62.
|
10 |
GARRETT H B, PIKE C P. Space systems and their interactions with earth’s space environment[M]. Reston: American Institute of Aeronautics and Astronautics, 1980: 707-736.
|
11 |
LI J S, YANG Z, LUO Y Z. A review of space-object collision probability computation methods[J]. Astrodynamics, 2022, 6(2): 95-120.
|
12 |
庞宝君, 王东方, 肖伟科. 小卫星星座爆炸解体对空间碎片环境影响分析[J]. 空间碎片研究, 2018, 18(3): 7-15.
|
|
PANG B J, WANG D F, XIAO W K. Study of effect of constellation explosion event on space debris environment[J]. Space Debris Research, 2018, 18(3): 7-15 (in Chinese).
|
13 |
OLIVIERI L, FRANCESCONI A. Large constellations assessment and optimization in LEO space debris environment[J]. Advances in Space Research, 2020, 65(1): 351-363.
|
14 |
BOLEY A C, BYERS M. Satellite mega-constellations create risks in Low Earth Orbit, the atmosphere and on Earth[J]. Scientific Reports, 2021, 11: 10642.
|
15 |
CANOY J, BETTINGER R. Preliminary debris risk assessment for mega-constellations in low and medium earth orbit due to satellite breakup[J]. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 2023.
|
16 |
CANOY J, BETTINGER R A. Debris risk assessment for mega-constellations in low and medium earth orbit due to satellite breakup during orbit raising maneuver[C]∥ Proceedings of the SCITECH 2023 Forum. Reston: AIAA, 2023: 2023-2287.
|
17 |
WEN C X, JIN Z H, PENG C, et al. Modeling medium-term debris cloud of satellite breakup via probabilistic method[J]. Journal of Guidance, Control, and Dynamics, 2024: 1-18.
|
18 |
兰胜威, 柳森, 李毅, 等. 航天器解体模型研究的新进展[J]. 实验流体力学, 2014, 28(2): 73-78, 104.
|
|
LAN S W, LIU S, LI Y, et al. Recent progress on spacecraft breakup[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 73-78, 104 (in Chinese).
|
19 |
JOHNSON N L, KRISKO P H, LIOU J C, et al. NASA’s new breakup model of evolve 4.0[J]. Advances in Space Research, 2001, 28(9): 1377-1384.
|
20 |
VALLADO D A. Fundamentals of astrodynamics and applications[M]. JAMES W. 4th ed, Portland: Microcosm Press, 2013: 525-594.
|
21 |
PATERA R P. General method for calculating satellite collision probability[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(4): 716-722.
|
22 |
FREY S, COLOMBO C. Transformation of satellite breakup distribution for probabilistic orbital collision hazard analysis[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(1): 88-105.
|
23 |
FORBES C, EVANS M, HASTINGS N, et al. Statistical Distributions[M]. Hoboken: Wiley, 2010: 24-31.
|
24 |
JENKIN A B. Probability of collision during the early evolution of debris clouds[J]. Acta Astronautica, 1996, 38(4-8): 525-538.
|
25 |
KESSLER D J. Orbital debris environment for spacecraft in low earth orbit[J]. Journal of Spacecraft and Rockets, 1991, 28(3): 347-351.
|
26 |
汪颋, 董云峰. 航天器与短期空间碎片云碰撞概率算法[J]. 中国空间科学技术, 2006, 26(2): 17-23.
|
|
WANG T, DONG Y F. Algorithms of collision probability between spacecraft and short-term debris clouds[J]. Chinese Space Science and Technology, 2006, 26(2): 17-23 (in Chinese).
|
27 |
PARDINI C, ANSELMO L. Review of past on-orbit collisions among cataloged objects and examination of the catastrophic fragmentation concept[J]. Acta Astronautica, 2014, 100: 30-39.
|
28 |
Hejduk M D, Johnson L C. Evaluating probability of collision (Pc) uncertainty[EB/OL]. (2016-04-01)[2024-05-01].
|