收稿日期:
2023-05-22
修回日期:
2023-06-21
接受日期:
2023-07-11
出版日期:
2024-04-25
发布日期:
2023-07-21
通讯作者:
吴一全
E-mail:nuaaimage@163.com
基金资助:
Qichang ZHAO1,2, Yiquan WU1(), Yubin YUAN1
Received:
2023-05-22
Revised:
2023-06-21
Accepted:
2023-07-11
Online:
2024-04-25
Published:
2023-07-21
Contact:
Yiquan WU
E-mail:nuaaimage@163.com
Supported by:
摘要:
不论是在军事侦查领域还是海洋执法方面,舰船目标检测与识别技术都至关重要,尤其是随着光学遥感卫星技术的发展,获取了大量的舰船成像数据,怎样迅速从大批量的光学成像资料中精确定位和鉴别出舰船目标是富有挑战性的工作。首先,概述了光学遥感图像舰船目标检测与识别技术的发展历程和技术流程;然后,依次阐述了光学遥感图像的获取与预处理、海陆分离、舰船目标检测和舰船目标识别等方面的研究进展,重点论述了采用传统和深度学习2类方法开展光学遥感图像目标检测与识别的研究进展;接着,介绍了11种包含舰船目标的遥感图像数据集以及性能评价指标;最后,分析了舰船目标检测与识别技术面临的主要问题,并展望了舰船检测与识别技术今后的发展方向。
中图分类号:
赵其昌, 吴一全, 苑玉彬. 光学遥感图像舰船目标检测与识别方法研究进展[J]. 航空学报, 2024, 45(8): 29025-029025.
Qichang ZHAO, Yiquan WU, Yubin YUAN. Progress of ship detection and recognition methods in optical remote sensing images[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 29025-029025.
表 1
国内外典型高分辨率光学遥感卫星主要参数
卫星名称 | 轨道 | 波段/nm | 分辨率/m | 幅宽/km |
---|---|---|---|---|
WorldView-1 | 高度:496 km 太阳同步轨道 | 全色:400~900 | 0.5 | 17.7 |
WorldView-2 | 高度:771 km 太阳同步轨道 | 全色:450~800 | 0.46 | 16.4 |
WorldView-3 | 高度:617 km 太阳同步轨道 | 全色:450~800 | 0.31 | 13.1 |
WorldView-4 | 高度:617 km 太阳同步轨道 | 多光谱: 蓝:450~510 绿:510~580 红:655~690 近红外:780~920 | 全色:0.31 多光谱:1.24 | 13.1 |
GeoEye-1 | 高度:681 km 太阳同步轨道 | 全色:450~900 蓝:450~510 绿:520~580 红:655~690 近红外:780~920 | 全色:0.41 多光谱:1.65 | 15.2 |
Planet卫星星座 | 高度: 国际空间站轨道:400 km 太阳同步轨道:475 km | 国际空间站轨道 太阳同步轨道蓝:455~515 蓝:455~515绿:500~590 绿:500~590红:590~670 红:590~670近红外:780~860 近红外:780~860 | 400 km轨道:3 475 km轨道:3.7 | 24.6 |
SkySat卫星系列 | 高度:630 km 太阳同步轨道 | 蓝:440~510 绿:520~590 红:630~685 近红外:760~850 | 5 | 77 |
Pleiades星座 | 高度:694 km 太阳同步轨道 | 全色:470~830 蓝:430~550 绿:500~620 红:590~710 近红外:740~940 | 全色:0.5 多光谱:2 | 20 |
表1
续表
卫星名称 | 轨道 | 波段/nm | 分辨率/m | 幅宽/km |
---|---|---|---|---|
SPOT-6/7 | 高度:695 km 太阳同步轨道 | 全色:450~750 蓝:450~520 绿:530~600 红:620~690 近红外:760~890 | 全色:1.5 多光谱:6 | 60 |
DEIMOS-2 | 高度:620 km 太阳同步轨道 | 全色:560~900 蓝:466~525 绿:532~599 红:640~697 近红外:770~892 | 全色:0.75 多光谱:3 | 20 |
北京二号 | 高度:651 km 太阳同步轨道 | 全色:450~650 蓝:440~510 绿:510~590 红:600~670 近红外:760~910 | 全色:0.8 多光谱:3.2 | 24 |
高景一号 | 高度:530 km 太阳同步轨道 | 全色:450~890 蓝:450~520 绿:520~590 红:630~690 近红外:770~890 | 全色:0.5 多光谱:2 | 12 |
高分一号 | 高度:645 km 太阳同步轨道 | 全色:450~900 | 全色:2 多光谱:8 | 60 |
蓝:450~520 | ||||
绿:520~590 | ||||
红:630~690 | ||||
近红外:770~890 | ||||
高分二号 | 高度:631 km 太阳同步轨道 | 全色:450~900 | 全色:1 多光谱:4 | 45 |
蓝:450~520 | ||||
绿:520~590 | ||||
红:630~690 | ||||
近红外:770~890 | ||||
高分六号 | 高度:644.5 km 太阳同步轨道 | 全色:450~900 | 全色:2 多光谱:8 | 90 |
蓝:450~520 | ||||
绿:520~600 | ||||
红:630~690 | ||||
近红外:760~900 | ||||
高分七号 | 高度:500 km 太阳同步轨道 | 全色:450~900 | 全色:前视0.65、后视0.8 多光谱:后视2.6 | 20 |
蓝:450~520 | ||||
绿:520~600 | ||||
红:630~690 | ||||
近红外:770~890 |
表 4
海洋背景和海陆背景下传统的舰船检测方法比较
分类 | 方法 | 优点 | 不足 |
---|---|---|---|
海洋背景下舰船目标候选区域提取 | 灰度信息方法 | 适用于水面平静、水域较暗和纹理均匀的图像,计算较简单 | 复杂海况,提取效果不好 |
模板匹配法 | 适用于海面平静且舰船目标与海面背景对比强烈的场合 | 复杂背景下边缘定位不准确 | |
分形模型和模糊集理论结合法 | 有效地利用了目标和背景之间的差异特性,可以有效解决数据不完备、不清晰问题 | 不能兼顾检测性能和耗时 | |
海陆背景下舰船目标候选区域提取 | 视觉感知原理法 | 较好地模拟了人类大脑视觉感知的特性 | 难以分析和提取目标的显著特征及显著图 |
港口先验知识法 | 能很好地解决靠岸舰船目标检测问题 | 较难获取精确的匹配模板 | |
图像分析法 | 不依赖港口的先验信息 | 舰船目标的显著性特征选取困难 |
表 5
典型深度学习目标检测算法比较
分类 | 方法 | 优点 | 不足 | 文献 | 贡献 | 数据集 | mAP/% |
---|---|---|---|---|---|---|---|
两阶段算法 | R-CNN | CNN首次用于目标检测 | 训练繁琐,占资源,速度慢 | [ | 采用Soft-NMS替换 R-CNN算法中的 NMS | 作者自建 | 51.17 |
Fast R-CNN | 提出ROI层 | 算法耗时,无法实时 | [ | 通过Fast R-CNN框架实现了对舰船目标的检测 | 作者自建 | 83.79 | |
Faster R-CNN | 引入RPN,精度与速度提高 | 计算复杂,无法实时 | [ | RPN网络部分加入了K-means聚类算法,速度更快 | NWPU VHR-10[ | 95.18 | |
R-FCN | 共享网络,速度与性能提升 | 速度有提升,但仍不能实时 | [ | 对特征提取网络进行混合尺度卷积核处理,使特征提取网络能够抑制相干斑噪声 | 作者自建 | 97.37 | |
一阶段算法 | YOLOv1 | 速度较快 | 小的、靠近的目标检测较差 | [ | 将YOLO引入船舶检测 | 作者自建 | 57.3 |
YOLOv2 | 分类检测联合训练,速度更快 | 输入尺寸固定,小目标精度差 | [ | 结合SVM,实现复杂背景下船舶分类 | 作者自建 | 80.5 | |
YOLOv3 | 多尺度预测,小目标检测好 | 目标位置精准性不高,召回率低 | [ | 设计了一种多尺度和自适应特征处理模块 | SeaShips [ | 91.47 | |
YOLOv4 | 兼顾了检测精度和速度 | 检测精度有待进一步提高 | [ | 采用Softer-NMS对非极大值抑制算法进行优化,提升模型对密集船舶的检测能力和定位精度 | SeaShips+作者扩充 | 96.78 | |
YOLOv5 | 模型尺寸小,部署成本低,灵活性高,检测速度高 | 检测精度可以进一步提高 | [ | 引入Mixup数据增强方法,采用Focal loss损失函数,用K-means聚类算法对数据集重新聚类 | SeaShips | 98.6 | |
YOLOv6 | 相对同类规模的算法,在检测精度和速度之间取得最佳权衡 | 性能有待提高 | / | / | / | ||
YOLOX | 算法精度与速度进一步提升 | 大尺寸样本训练慢 | [ | 引入了CA位置注意力模块,将CIoU损失和Focal loss损失引入到模型优化训练阶段 | HRSC2016[ | 94.37 | |
YOLOv7 | 引入锚框机制,进一步提高了目标回归率 | 增加了训练成本 | [ | 增强了复杂背景下对舰船关键特征的提取能力 | HRSID [ | 95.37 | |
SSD | 适应多尺度目标训练与检测 | 调试过程非常依赖经验,小、近目标精度差 | [ | 结合特征融合思想,提出基于特征融合的改进算法 | 作者自建 | 81.7 | |
SSD | 比SSD精度高 | 模型复杂,速度较慢 | 作者自建 | 82.6 | |||
FSSD | 性能上比SSD有很大的提高 | 速度略有下降 | / | / | / |
表6
基于Transformer的目标检测算法
类型 | 模型 | 优点 | 缺点 | 适用场景 | 数据集 | AP/% |
---|---|---|---|---|---|---|
Transformer neck | DETR | 网络结构简单,端到端训练,简化检测流程,消除NMS和锚框生成等手工组件需求 | 训练时间太长,小目标检测效果差 | 目标检测 全景分割 | COCO | 42.0 |
Deformable DETR | 加快收敛速度、提高小目标检测精度,计算和内存效率高 | 无序的内存访问,检测速度有所下降 | 目标检测 | COCO | 46.9 | |
TSP-FCOS | 采用encoder-only的DETR,网络结构简单,收敛速度加快,小目标精度提升 | 大目标精度降低 | 目标检测 | COCO | 43.1 | |
TSP-RCNN | 网络结构简单,收敛速度加快,小目标精度提升 | 执行边框细化操作会增加更多的计算资源 | 目标检测 | COCO | 45.0 | |
ACT | 缓解了目标查询的冗余现象,降低了计算量 | 小目标检测效果不好 | 目标检测 | COCO | 43.1 | |
UP-DETR | 比DETR精度高、收敛速度快 | 小目标检测效果依然不好 | 目标检测 全景分割 | COCO VOC | 42.8 56.1 | |
Transformer backbone | FPT | 高效的特征交互算法,实现特征信息跨空间和尺度交互,即插即用,整体思路新颖 | 计算量和参数量较大 | 目标检测 实例分割 语义分割 | COCO | 42.6 |
Swin Transformer | 在各类基准上精度很高,远超于已有模型 | 拥有线性计算复杂度 | 图像分类 目标检测 语义分割 | COCO | 58.7 | |
Swin Transformer V2 | 大型视觉模型,模型训练稳定,实现不同分辨率之间模型的有效转换 | 参数量大 | COCO | 63.1 |
表11
不同模型在SeaShips数据集的检测结果
模型 | mAP |
---|---|
Fast(VGG16) | 0.710 3 |
Faster(ZF) | 0.891 6 |
Faster(VGG16) | 0.901 2 |
Faster(ResNet18) | 0.906 3 |
Faster(ResNet50) | 0.916 5 |
Fast(VGG16) | 0.710 3 |
Faster(ZF) | 0.891 6 |
Faster(VGG16) | 0.901 2 |
Faster(ResNet18) | 0.906 3 |
Faster(ResNet50) | 0.916 5 |
Faster(ResNet101) | 0.924 0 |
SSD 300(MobileNet) | 0.776 6 |
SSD 608(MobileNet) | 0.795 0 |
SSD 300(VGG16) | 0.793 7 |
SSD 608(VGG16) | 0.867 3 |
YOLO v2 random=0 | 0.775 1 |
YOLO v2 random=1 | 0.790 6 |
表 22
包含船舶目标的光学遥感图像数据集
数据集 | 年份 | 单位 | 图像总数 | 船舶图像数量 | 备注 | 下载链接 |
---|---|---|---|---|---|---|
SeaShips | 2018 | 武汉大学 | 31 455 | 10 800 | 66种目标 | http:∥www.lmars.whu.edu.cn/prof_web/shaozhenfeng/datasets/SeaShips%287000%29.zip |
NWPU VHR-10 | 2014 | 西北工业大学 | 800 | 57 | 共有10类遥感目标 | https:∥pan.baidu.com/s/1hqwzXeG#list/path=%2F |
NWPU-RESISC45 | 2016 | 西北工业大学 | 31 500 | 700 | 45类遥感目标,图像尺寸为256×256 | https:∥pan.baidu.com/s/1mifR6tU#list/path=%2F |
HRSC2016 | 2016 | 中国科学院自动化研究所 | 1 070 | 1 070 | 用于船舶检测与分类,2 976个、超过25类船舶目标 | https:∥pan.baidu.com/share/init?surl=Sz2aohknDVCYrnXcnPQuaQ |
DOTA | 2017 | 武汉大学 | 2 806 | 15类遥感目标,包含数万个船舶目标 | https:∥captain-whu.github.io/DOTA/index.html | |
DIOR | 2018 | 西北工业大学 | 23 463 | 1 200 | 共有20类遥感目标 | http:∥www.escience.cn/people/gongcheng/DIOR.html |
MASATI | 2019 | 阿里坎特大学 | 7 389 | 4 157 | 7类目标,可用于船舶检测与分类 | https:∥www.iuii.ua.es/datasets/masati/ |
HRRSD | 2019 | 中国科学院大学 | 21 761 | 1 898 | 13类目标,图像分辨率0.15~1.2 m | https:∥pan.baidu.com/s/11OhYOZ2SrBc_lKY5LR_8gw |
iSAID | 2019 | 武汉大学 | 2 806 | 15类目标,图像像素400~15 000 | https:∥captain-whu.github.io/iSAID/dataset.html | |
xView | 2018 | DIUx and NGA | 22 000+ | 10 000 | 60类目标,图像像素2 500~5 000 | https:∥pan.baidu.com/s/10zQb06R8KoBLswmfS2jTgw |
LEVIR | 2018 | 北京航空航天大学 | 22 000 | 3类目标,800×600,3 025艘船 | https:∥pan.baidu.com/s/1hVx74Q4waNRKsC6yEhrHoQ |
1 | BI F K, ZHU B C, GAO L N, et al. A visual search inspired computational model for ship detection in optical satellite images[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 749-753. |
2 | TANG J X, DENG C W, HUANG G B, et al. Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1174-1185. |
3 | 王彦情, 马雷, 田原. 光学遥感图像舰船目标检测与识别综述[J]. 自动化学报, 2011, 37(9): 1029-1039. |
WANG Y Q, MA L, TIAN Y. State-of-the-art of ship detection and recognition in optical remotely sensed imagery[J]. Acta Automatica Sinica, 2011, 37(9): 1029-1039 (in Chinese). | |
4 | KANJIR U, GREIDANUS H, OŠTIR K. Vessel detection and classification from spaceborne optical images: A literature survey[J]. Remote Sensing of Environment, 2018, 207: 1-26. |
5 | 徐芳, 刘晶红, 孙辉, 等. 光学遥感图像海面船舶目标检测技术进展[J]. 光学 精密工程, 2021, 29(4): 916-931. |
XU F, LIU J H, SUN H, et al. Research progress on vessel detection using optical remote sensing image[J]. Optics and Precision Engineering, 2021, 29(4): 916-931 (in Chinese). | |
6 | 张财广, 熊博莅, 匡纲要. 光学卫星遥感图像舰船目标检测综述[J]. 电波科学学报, 2020, 35(5): 637-647. |
ZHANG C G, XIONG B L, KUANG G Y. A survey of ship detection in optical satellite remote sensing images[J]. Chinese Journal of Radio Science, 2020, 35(5): 637-647 (in Chinese). | |
7 | 廖育荣, 王海宁, 林存宝, 等. 基于深度学习的光学遥感图像目标检测研究进展[J]. 通信学报, 2022, 43(5): 190-203. |
LIAO Y R, WANG H N, LIN C B, et al. Research progress of deep learning-based object detection of optical remote sensing image[J]. Journal on Communications, 2022, 43(5): 190-203 (in Chinese). | |
8 | HOWARD D, ROBERTS S, BRANKIN R. Target detection in SAR imagery by genetic programming[J]. Advances in Engineering Software, 1999, 30(5): 303-311. |
9 | MARRE F. Automatic vessel detection system on SPOT-5 optical imagery: A neuro-genetic approach[C]∥The Fourth Meeting of the DECLIMS Project, 2004. |
10 | 宋志娜, 眭海刚, 李永成. 高分辨率可见光遥感图像舰船目标检测综述[J]. 武汉大学学报(信息科学版), 2021, 46(11): 1703-1715. |
SONG Z N, SUI H G, LI Y C. A survey on ship detection technology in high-resolution optical remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1703-1715 (in Chinese). | |
11 | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
12 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
13 | REDMON J, FARHADI A. YOLOv3: An incremental improvement[DB/OL]. arXiv preprint: 1804.02767, 2018. |
14 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]∥European Conference on Computer Vision. Cham: Springer, 2016: 21-37. |
15 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327. |
16 | 郭伟娅. 基于光学遥感图像的舰船目标识别研究[D]. 哈尔滨: 哈尔滨工程大学, 2015: 4-14. |
GUO W Y. Research on ship recognition using optical remote sensing data[D].Harbin: Harbin Engineering University, 2015: 4-14 (in Chinese). | |
17 | 尹莹莹. 高分辨率光学遥感影像舰船目标检测与识别算法研究[D]. 上海: 上海交通大学, 2017: 2-7. |
YIN Y Y. Research on ship detection and identification algorithm in high-resolution remote sensing images[D].Shanghai: Shanghai Jiao Tong University, 2017: 2-7 (in Chinese). | |
18 | 杜朝阳. 主流商业光学遥感卫星介绍[EB/OL].(2019-01-21)[2023-03-18]. . |
DU C Y. Introduction to mainstream commercial optical remote sensing satellite[EB/OL]. (2019-01-21)[2023-03-18]. (in Chinese). | |
19 | 石丹, 李庆武, 倪雪, 等. 基于Contourlet变换的红外图像非线性增强算法[J]. 光学学报, 2009, 29(2): 342-346. |
SHI D, LI Q W, NI X, et al. Infrared image nonlinear enhancement algorithm based on contourlet transform[J]. Acta Optica Sinica, 2009, 29(2): 342-346 (in Chinese). | |
20 | 宋明珠, 曲宏松, 金光. 含噪光学遥感图像海面弱小舰船目标检测[J]. 光学学报, 2017, 37(10): 1011004. |
SONG M Z, QU H S, JIN G. Weak ship target detection of noisy optical remote sensing image on sea surface[J]. Acta Optica Sinica, 2017, 37(10): 1011004 (in Chinese). | |
21 | 胡莹洁. 雾天图像去雾方法研究[D]. 徐州: 中国矿业大学(江苏), 2022: 2-7. |
HU Y J. Research on defogging method of fog image[D]. Xuzhou: China University of Mining and Technology, 2022: 2-7 (in Chinese). | |
22 | 王超. 基于图像增强的几种雾天图像去雾算法[J]. 自动化应用, 2018(2): 70, 80. |
WANG C. Several defogging algorithms for foggy images based on image enhancement[J]. Automation Application, 2018(2): 70, 80 (in Chinese). | |
23 | 付辉. 大气散射模型下的雾天图像清晰化方法研究[D]. 绵阳: 西南科技大学, 2020: 6-8. |
FU H. Research on sharpening method of haze image under atmospheric scattering model[D]. Mianyang: Southwest University of Science and Technology, 2020: 6-8 (in Chinese). | |
24 | 钱雯. 基于深度学习的图像去雾算法研究[D]. 南京: 南京邮电大学, 2020: 3-6. |
QIAN W. Research on image defogging algorithm based on depth learning [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020: 3-6 (in Chinese). | |
25 | 杨嘉能. 基于直方图均衡的图像增强算法优化研究[D]. 乌鲁木齐: 新疆大学, 2021: 7-9. |
YANG J N. Optimization of image enhancement algorithm based on histogram equalization [D]. Urumqi: Xinjiang University, 2021: 7-9 (in Chinese). | |
26 | KOCH M D, ROHRBACH A. Label-free imaging and bending analysis of microtubules by ROCS microscopy and optical trapping[J]. Biophysical Journal, 2018, 114(1): 168-177. |
27 | 夏栋. 面向对象的暗原色先验图像去雾研究[D]. 武汉: 华中科技大学, 2015: 16-25. |
XIA D. Study on the object-oriented image defogging using dark channel prior[D]. Wuhan: Huazhong University of Science and Technology, 2015: 16-25 (in Chinese). | |
28 | AHMAD BHATTI F, HAMEDANI G G, KORKMAZ M Ç, et al. The transmuted geometric-quadratic hazard rate distribution: Development, properties, characterizations and applications[J]. Journal of Statistical Distributions and Applications, 2018, 5(1): 4-10. |
29 | 刘同军. 基于偏振特性的图像复原算法的研究[D]. 长春: 长春理工大学, 2016: 27-32. |
LIU T J. Research of image restoration algorithm based on polarization characteristics[D]. Changchun: Changchun University of Science and Technology, 2016: 27-32 (in Chinese). | |
30 | OAKLEY J P, SATHERLEY B L. Improving image quality in poor visibility conditions using a physical model for contrast degradation[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 1998, 7(2): 167-179. |
31 | TAREL J P, HAUTIÈRE N. Fast visibility restoration from a single color or gray level image[C]∥2009 IEEE 12th International Conference on Computer Vision. Piscataway: IEEE Press, 2009: 2201-2208. |
32 | CAI B L, XU X M, JIA K, et al. DehazeNet: An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2016, 25(11): 5187-5198. |
33 | LI J J, LI G H, FAN H. Image dehazing using residual-based deep CNN[J]. IEEE Access, 2018, 6: 26831-26842. |
34 | YUAN K L, WEI J G, LU W H, et al. Single image dehazing via NIN-DehazeNet[J]. IEEE Access, 2019, 7: 181348-181356. |
35 | LI B Y, REN W Q, FU D P, et al. Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2019, 28(1): 492-505. |
36 | SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images[C]∥European Conference on Computer Vision. Berlin: Springer, 2012: 746-760. |
37 | REN W Q, PAN J S, ZHANG H, et al. Single image dehazing via multi-scale convolutional neural networks with holistic edges[J]. International Journal of Computer Vision, 2020, 128(1): 240-259. |
38 | LIU Y, PAN J S, REN J, et al. Learning deep priors for image dehazing[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 2492-2500. |
39 | ZHU H Y, PENG X, CHANDRASEKHAR V, et al. DehazeGAN: When image dehazing meets differential programming[C]∥Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018: 1234-1240. |
40 | DENG Q L, HUANG Z L, TSAI C C, et al. HardGAN: A haze-aware representation distillation GAN for single image dehazing[C]∥European Conference on Computer Vision. Cham: Springer, 2020: 722-738. |
41 | LI B Y, PENG X L, WANG Z Y, et al. AOD-net: All-in-one dehazing network[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 4780-4788. |
42 | ZHANG J, TAO D C. FAMED-net: A fast and accurate multi-scale end-to-end dehazing network[J]. IEEE Transactions on Image Processing, 2837, 29: 72-84. |
43 | ZHANG H, PATEL V M. Densely connected pyramid dehazing network[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3194-3203. |
44 | ZHANG H, SINDAGI V, PATEL V M. Multi-scale single image dehazing using perceptual pyramid deep network[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2018: 1015-101509. |
45 | ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2017, 26(7): 3142-3155. |
46 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 2261-2269. |
47 | REN W Q, MA L, ZHANG J W, et al. Gated fusion network for single image dehazing[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3253-3261. |
48 | XIAO J S, SHEN M Y, LEI J F, et al. Single image dehazing based on learning of haze layers[J]. Neurocomputing, 2020, 389: 108-122. |
49 | LIU Z, XIAO B T, ALRABEIAH M, et al. Single image dehazing with a generic model-agnostic convolutional neural network[J]. IEEE Signal Processing Letters, 2019, 26(6): 833-837. |
50 | LI R D, PAN J S, LI Z C, et al. Single image dehazing via conditional generative adversarial network[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8202-8211. |
51 | ENGIN D, GENC A, EKENEL H K. Cycle-dehaze: Enhanced CycleGAN for single image dehazing[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2018: 938-9388. |
52 | SU Y Z, CUI Z G, HE C, et al. Prior guided conditional generative adversarial network for single image dehazing[J]. Neurocomputing, 2021, 423: 620-638. |
53 | DUDHANE A, BIRADAR K M, PATIL P W, et al. Varicolored image de-hazing[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 4563-4572. |
54 | HODGES C, BENNAMOUN M, RAHMANI H. Single image dehazing using deep neural networks[J]. Pattern Recognition Letters, 2019, 128: 70-77. |
55 | HUANG L Y, YIN J L, CHEN B H, et al. Towards unsupervised single image dehazing with deep learning[C]∥2019 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2019: 2741-2745. |
56 | JIN Y Z, GAO G S, LIU Q J, et al. Unsupervised conditional disentangle network for image dehazing[C]∥2020 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2020: 963-967. |
57 | QU Y Y, CHEN Y Z, HUANG J Y, et al. Enhanced Pix2pix dehazing network[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 8152-8160. |
58 | LIU Q. Unsupervised single image dehazing via disentangled representation[C]∥Proceedings of the 3rd International Conference on Video and Image Processing. New York: ACM, 2019: 106-111. |
59 | GOLTS A, FREEDMAN D, ELAD M. Unsupervised single image dehazing using dark channel prior loss[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2019: 2692-2701. |
60 | LI B Y, GOU Y B, LIU J Z, et al. Zero-shot image dehazing[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2020: 8457-8466. |
61 | WEI P, WANG X, WANG L, et al. SIDGAN: Single image dehazing without paired supervision[C]∥2020 25th International Conference on Pattern Recognition (ICPR). Piscataway: IEEE Press, 2021: 2958-2965. |
62 | LI B Y, GOU Y B, GU S H, et al. You only look yourself: Unsupervised and untrained single image dehazing neural network[J]. International Journal of Computer Vision, 2021, 129(5): 1754-1767. |
63 | 周静, 田金文. 基于海岸线背景的海面小目标检测方法[J]. 红外与激光工程, 2005, 34(4): 486-489. |
ZHOU J, TIAN J W. Method of detecting small target in port-sea background[J]. Infrared and Laser Engineering, 2005, 34(4): 486-489 (in Chinese). | |
64 | 李文武. 中低分辨率光学遥感图像舰船目标检测算法研究[D]. 长沙: 国防科学技术大学, 2008. |
LI W W. Detection of ship in optical remote sensing image of median-low resolution[D]. Changsha: National University of Defense Technology, 2008 (in Chinese). | |
65 | GUAN J, CHEN X L, HUANG Y, et al. Adaptive fractional Fourier transform-based detection algorithm for moving target in heavy sea clutter[J]. IET Radar Sonar & Navigation, 2012, 6(5): 389. |
66 | 杨淼. 光学遥感图像的港口内舰船检测算法研究[D]. 成都: 西华大学, 2018: 2-7. |
YANG M. Research on ship detection algorithms in harbors based on optical remote sensing images[D].Chengdu: Xihua University, 2018: 2-7 (in Chinese). | |
67 | 张振. 高分辨率可见光遥感图像港口及港内目标识别方法研究[D]. 合肥: 中国科学技术大学, 2009: 12-28. |
ZHANG Z. A study on harbor target recognition in high resolution optical remote sensing image[D]. Hefei: University of Science and Technology of China, 2009: 12-28 (in Chinese). | |
68 | 张风丽, 张磊, 吴炳方. 欧盟船舶遥感探测技术与系统研究的进展[J]. 遥感学报, 2007, 11(4): 552-562. |
ZHANG F L, ZHANG L, WU B F. Progress of ship detection technology and system based on remote sensing technology in European union[J]. Journal of Remote Sensing, 2007, 11(4): 552-562 (in Chinese). | |
69 | LI M D, CUI X C, CHEN S W. Adaptive superpixel-level CFAR detector for SAR inshore dense ship detection[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 4010405. |
70 | 陈琨, 陈学佺. 一种基于几何特征的舰船与码头目标分割的新方法[J]. 计算机工程与应用, 2004, 40(31): 197-199, 221. |
CHEN K, CHEN X Q. A new ship and dock target segmentation method based on Geome try feature[J]. Computer Engineering and Applications, 2004, 40(31): 197-199, 221 (in Chinese). | |
71 | 肖利平, 曹炬, 高晓颖. 复杂海地背景下的舰船目标检测[J]. 光电工程, 2007, 34(6): 6-10. |
XIAO L P, CAO J, GAO X Y. Detection for ship targets in complicated background of sea and land[J]. Opto-Electronic Engineering, 2007, 34(6): 6-10 (in Chinese). | |
72 | 张锦, 赖祖龙, 孙杰. Otsu法、区域生长法及形态学相结合的遥感图像海岸线提取[J]. 测绘通报, 2020(10): 89-92. |
ZHANG J, LAI Z L, SUN J. Coastline extraction of remote sensing image by combining Otsu, regional growth method with morphology[J]. Bulletin of Surveying and Mapping, 2020(10): 89-92 (in Chinese). | |
73 | ESPINDOLA G M, CAMARA G, REIS I A, et al. Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation[J]. International Journal of Remote Sensing, 2006, 27(14): 3035-3040. |
74 | 汪闽, 骆剑承, 明冬萍. 高分辨率遥感影像上基于形状特征的船舶提取[J]. 武汉大学学报(信息科学版), 2005, 30(8): 685-688. |
WANG M, LUO J C, MING D P. Extract ship targets from high spatial resolution remote sensed imagery with shape feature[J]. Geomatics and Information Science of Wuhan University, 2005, 30(8): 685-688 (in Chinese). | |
75 | 王岳环, 秦小娟, 韦海萍, 等. 基于港口匹配和海域分割的靠岸舰船检测方法[J]. 华中科技大学学报(自然科学版), 2017, 45(10): 95-99. |
WANG Y H, QIN X J, WEI H P, et al. Inshore ship detection method based on harbor matching and sea-area segmentation[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(10): 95-99 (in Chinese). | |
76 | 罗兴潮, 黄文骞, 李加群, 等. 一种基于SURF特征点匹配的港口影像海陆分离方法[J]. 舰船电子工程, 2020, 40(11): 141-144, 157. |
LUO X C, HUANG W Q, LI J Q, et al. A port image sea-land separation method based on SURF feature point matching[J]. Ship Electronic Engineering, 2020, 40(11): 141-144, 157 (in Chinese). | |
77 | 黎经元, 厉小润, 赵辽英. 基于边缘线分析与聚合通道特征的港口舰船检测[J]. 光学学报, 2019, 39(8): 0815004. |
LI J Y, LI X R, ZHAO L Y. Docked ship detection based on edge line analysis and aggregation channel features[J]. Acta Optica Sinica, 2019, 39(8): 0815004 (in Chinese). | |
78 | CHENG D C, MENG G F, XIANG S M, et al. FusionNet: Edge aware deep convolutional networks for semantic segmentation of remote sensing harbor images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5769-5783. |
79 | 熊伟, 蔡咪, 吕亚飞, 等. 基于神经网络的遥感图像海陆语义分割方法[J]. 计算机工程与应用, 2020, 56(15): 221-227. |
XIONG W, CAI M, LYU Y F, et al. Sea-land semantic segmentation method of remote sensing image based on neural network[J]. Computer Engineering and Applications, 2020, 56(15): 221-227 (in Chinese). | |
80 | 高慧, 阎晓东, 张衡, 等. 基于Res2Net的多尺度遥感影像海陆分割方法[J]. 光学学报, 2022, 42(18): 1828004. |
GAO H, YAN X D, ZHANG H, et al. Multi-scale sea-land segmentation method for remote sensing images based on Res2Net[J]. Acta Optica Sinica, 2022, 42(18): 1828004 (in Chinese). | |
81 | 王振华, 钟元芾, 何婉雯, 等. 改进Deeplab网络的遥感影像海岛岸线分割[J]. 中国图象图形学报, 2020, 25(4): 768-778. |
WANG Z H, ZHONG Y F, HE W W, et al. Island shoreline segmentation in remote sensing image based on improved Deeplab network[J]. Journal of Image and Graphics, 2020, 25(4): 768-778 (in Chinese). | |
82 | 姜鑫, 陈武雄, 聂海涛, 等. 航空遥感影像的实时舰船目标检测[J]. 光学 精密工程, 2020, 28(10): 2360-2369. |
JIANG X, CHEN W X, NIE H T, et al. Real-time ship target detection based on aerial remote sensing images[J]. Optics and Precision Engineering, 2020, 28(10): 2360-2369 (in Chinese). | |
83 | 都期望. 基于MPEG-7标准的海上移动目标分类方法研究[D]. 大连: 大连海事大学, 2016: 12-18. |
DU Q W. Research on classification method of moving target at sea based on MPEG-7 standard[D]. Dalian: Dalian Maritime University, 2016: 12-18 (in Chinese). | |
84 | 王方超, 张旻, 宫丽美. 基于几何特征的水面舰船快速检测算法[J]. 海军工程大学学报, 2016, 28(5): 57-63. |
WANG F C, ZHANG M, GONG L M. Fast algorithm for detection of water surface ships based on geometrical features[J]. Journal of Naval University of Engineering, 2016, 28(5): 57-63 (in Chinese). | |
85 | 施鹏. 基于光学遥感图像的舰船目标自动检测技术[D]. 合肥: 中国科学技术大学, 2011: 1-9. |
SHI P. Automatic ship target detection technology based on optical remote sensing image [D]. Hefei: China University of Science and Technology, 2011: 1-9 (in Chinese). | |
86 | 罗芳, 刘阳, 何道森. 复杂场景下自适应特征融合的多尺度船舶检测[J/OL]. 计算机应用, (2022-7-13)[2023-04-06].. |
LUO F, LIU Y, HE D S. Multi scale ship detection using adaptive feature fusion in complex scenes [[J/OL].Computer Applications, (2022-7-13)[2023-04-06]. (in Chinese). | |
87 | ESPINDOLA G M, CAMARA G, REIS I A, et al. Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation[J]. International Journal of Remote Sensing, 2006, 27(14): 3035-3040. |
88 | ZHU C R, ZHOU H, WANG R S, et al. A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9): 3446-3456. |
89 | 何四华, 杨绍清, 石爱国, 等. 纹理高阶分形特征在海面舰船目标检测中的应用[J]. 光学与光电技术, 2008, 6(4): 79-82. |
HE S H, YANG S Q, SHI A G, et al. Detection of ship target under sea background based on texture high-order fractal feature[J]. Optics & Optoelectronic Technology, 2008, 6(4): 79-82 (in Chinese). | |
90 | 张东晓, 何四华, 杨绍清. 一种多尺度分形的舰船目标检测方法[J]. 激光与红外, 2009, 39(3): 315-318. |
ZHANG D X, HE S H, YANG S Q. Ship targets detection method based on multi-scale fractal feature[J]. Laser & Infrared, 2009, 39(3): 315-318 (in Chinese). | |
91 | 李长军, 胡应添, 陈学佺. 基于模糊理论的SAR图像海上舰船检测方法研究[J]. 计算机应用, 2005, 25(8): 1954-1956. |
LI C J, HU Y T, CHEN X Q. A method for ship detection in SAR images based on fuzzy theory[J]. Computer Applications, 2005, 25(8): 1954-1956 (in Chinese). | |
92 | 张俊格. 基于视觉结构表达与建模的物体检测研究[D]. 北京: 中国科学院大学, 2013: 10-15. |
ZHANG J G. Research on object detection based on visual structure expression and modeling[D]. Beijing: University of Chinese Academy of Sciences, 2013: 10-15 (in Chinese). | |
93 | 杨帆. 生物特征识别的视觉检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2005: 6-12. |
YANG F. Research on visual detection technology of biometric identification[D]. Harbin: Harbin Institute of Technology, 2005: 6-12 (in Chinese). | |
94 | 施鹏, 庄连生, 敖欢欢, 等. 基于视觉感知机理的舰船目标检测[J]. 大气与环境光学学报, 2010, 5(5): 373. |
SHI P, ZHUANG L S, AO H H, et al. Ship detection based on human vision perception[J]. Journal of Atmospheric and Environmental Optics, 2010, 5(5): 373 (in Chinese). | |
95 | 梁秀雅, 冯水春, 陈红珍. 结合视觉显著性和EfficientNetV2 的舰船目标检测方法[J/OL]. 计算机工程与应用, (2022-12-14)[2023-04-06]. . |
LIANG X Y, FENG S C, CHEN H Z. A ship target detection method combining visual saliency and EfficientNetV2 [J/OL]. Computer Engineering and Applications, (2022-12-14) [2023-04-06]. (in Chinese). | |
96 | 周志远. 基于光学遥感图像的海面舰船目标识别技术研究[D]. 北京: 中国科学院研究生院, 2012: 3-5. |
ZHOU Z Y. Research on target recognition technology of ships on the sea surface based on optical remote sensing images[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2012: 3-5 (in Chinese). | |
97 | 徐芳, 刘晶红, 曾冬冬, 等. 基于视觉显著性的无监督海面舰船检测与识别[J]. 光学 精密工程, 2017, 25(5): 1300. |
XU F, LIU J H, ZENG D D, et al. Detection and identification of unsupervised ships and warships on sea surface based on visual saliency[J]. Optics and Precision Engineering, 2017, 25(5): 1300 (in Chinese). | |
98 | 赵浩光, 王平, 董超, 等. 结合多尺度视觉显著性的舰船目标检测[J]. 光学 精密工程, 2020, 28(6): 1395-1403. |
ZHAO H G, WANG P, DONG C, et al. Ship detection based on the multi-scale visual saliency model[J]. Optics and Precision Engineering, 2020, 28(6): 1395-1403 (in Chinese). | |
99 | 王慧利, 朱明, 蔺春波, 等. 光学遥感图像中复杂海背景下的舰船检测[J]. 光学 精密工程, 2018, 26(3): 723-732. |
WANG H L, ZHU M, LIN C B, et al. Ship detection of complex sea background in optical remote sensing images[J]. Optics and Precision Engineering, 2018, 26(3): 723-732 (in Chinese). | |
100 | 吴飞, 汪渤, 周志强, 等. 基于船头特征提取和轮廓定位的港口舰船检测[J]. 北京理工大学学报, 2018, 38(4): 387-392. |
WU F, WANG B, ZHOU Z Q, et al. Detection of ships in harbor based on ship head feature extraction and contour localization[J]. Transactions of Beijing Institute of Technology, 2018, 38(4): 387-392 (in Chinese). | |
101 | 王鹏林. 高分辨率光学遥感图像港内舰船目标检测算法研究[D]. 北京: 北京理工大学, 2018: 5-6. |
WANG P L. Research of inshore ship detection based on high resolution optical remote sensing imagery[D]. Beijing: Beijing Institute of Technology, 2018: 5-6 (in Chinese). | |
102 | 于楠晶, 范晓飚, 邓天民, 等. 基于多头自注意力的复杂背景船舶检测算法[J]. 浙江大学学报(工学版), 2022, 56(12): 2392-2402. |
YU N J, FAN X B, DENG T M, et al. Ship detection algorithm in complex backgrounds via multi-head self-attention[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(12): 2392-2402 (in Chinese). | |
103 | 刘忻伟, 朴永杰, 郑亮亮, 等. 面向航天光学遥感复杂场景图像的舰船检测[J]. 光学 精密工程, 2023, 31(6): 892-904. |
LIU X W, PIAO Y J, ZHENG L L, et al. Ship detection for complex scene images of space optical remote sensing[J]. Optics and Precision Engineering, 2023, 31(6): 892-904 (in Chinese). | |
104 | 余伟, 尤红建, 胡玉新, 等. 基于多尺度双邻域显著性的高分四号遥感图像运动船舶检测方法[J]. 电子与信息学报, 2023, 45(1): 282-290. |
YU W, YOU H J, HU Y X, et al. Moving ship detection method based on multi-scale dual-neighborhood saliency for GF-4 satellite remote sensing images[J]. Journal of Electronics & Information Technology, 2023, 45(1): 282-290 (in Chinese). | |
105 | BI F K, LIU F, GAO L N. A hierarchical salient-region based algorithm for ship detection in remote sensing images[M]∥Advances in Neural Network Research and Applications. Berlin: Springer, 2010: 729-738. |
106 | 储昭亮, 王庆华, 陈海林, 等. 基于极小误差阈值分割的舰船自动检测方法[J]. 计算机工程, 2007, 33(11): 239-241, 269. |
CHU Z L, WANG Q H, CHEN H L, et al. Ship auto detection method based on minimum error threshold segmentation[J]. Computer Engineering, 2007, 33(11): 239-241, 269 (in Chinese). | |
107 | WANG M, LUO J C, ZHOU C H, et al. A shape constraints based method to recognize ship objects from high spatial resolution remote sensed imagery[C]∥Proceedings of the 5th International Conference on Computational Science-Volume Part I. New York: ACM, 2005: 963-970. |
108 | TIAN M H, WAN S H, YUE L H. Ship detection in remote sensing images with complex sea surface background[J]. Journal of Chinese Computer Systems, 2007, 28(1): 1-5. |
109 | YANG G, LI B, JI S F, et al. Ship detection from optical satellite images based on sea surface analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3): 641-645. |
110 | 徐一帆, 谭跃进, 贺仁杰, 等. 天基海洋目标监视的系统分析及相关研究综述[J]. 宇航学报, 2010, 31(3): 628-640. |
XU Y F, TAN Y J, HE R J, et al. System analysis and research overview of space-based maritime surveillance[J]. Journal of Astronautics, 2010, 31(3): 628-640 (in Chinese). | |
111 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: ACM, 2014: 580-587. |
112 | GIRSHICK R. Fast R-CNN[C]∥2015 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2015: 1440-1448. |
113 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
114 | 杨龙, 苏娟, 黄华, 等. 一种基于深层次多尺度特征融合CNN的SAR图像舰船目标检测算法[J]. 光学学报, 2020, 40(2): 0215002. |
YANG L, SU J, HUANG H, et al. SAR ship detection based on convolutional neural network with deep multiscale feature fusion[J]. Acta Optica Sinica, 2020, 40(2): 0215002 (in Chinese). | |
115 | ZHANG R Q, YAO J, ZHANG K, et al. S-CNN-based ship detection from high-resolution remote sensing images[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016: 423-430. |
116 | 马啸, 邵利民, 金鑫, 等. 基于改进Mask R-CNN的可见光图像中舰船目标检测方法[J]. 北京理工大学学报, 2021, 41(7): 734-744. |
MA X, SHAO L M, JIN X, et al. Ship target detection in optical images based on improved mask R-CNN[J]. Transactions of Beijing Institute of Technology, 2021, 41(7): 734-744 (in Chinese). | |
117 | HAN X B, ZHONG Y F, ZHANG L P. An efficient and robust integrated geospatial object detection framework for high spatial resolution remote sensing imagery[J]. Remote Sensing, 2017, 9(7): 666. |
118 | LI Q P, MOU L C, LIU Q J, et al. HSF-net: Multiscale deep feature embedding for ship detection in optical remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7147-7161. |
119 | YAO Y, JIANG Z G, ZHANG H P, et al. Ship detection in optical remote sensing images based on deep convolutional neural networks[J]. Journal of Applied Remote Sensing, 2017, 11(4): 042611. |
120 | YANG F, XU Q Z, LI B, et al. Ship detection from thermal remote sensing imagery through region-based deep forest[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(3): 449-453. |
121 | LEI F Q, WANG W L, ZHANG W. Ship extraction using post CNN from high resolution optical remotely sensed images[C]∥2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). Piscataway: IEEE Press, 2019: 2531-2535. |
122 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 779-788. |
123 | REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 6517-6525. |
124 | 陈德海, 邵恒, 张军令. 改进YOLOv3的船舶检测算法研究[J]. 现代电子技术, 2023, 46(2): 101-106. |
CHEN D H, SHAO H, ZHANG J L. Research on improved YOLOv3 ship detection algorithm[J]. Modern Electronics Technique, 2023, 46(2): 101-106 (in Chinese). | |
125 | 徐英, 谷雨, 彭冬亮, 等. 面向合成孔径雷达图像任意方向舰船检测的改进YOLOv3模型[J]. 兵工学报, 2021, 42(8): 1698-1707. |
XU Y, GU Y, PENG D L, et al. An improved YOLOv3 model for arbitrary-oriented ship detection in SAR image[J]. Acta Armamentarii, 2021, 42(8): 1698-1707 (in Chinese). | |
126 | ZOU Z X, SHI Z W. Ship detection in spaceborne optical image with SVD networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5832-5845. |
127 | WANG R F, LI J, DUAN Y P, et al. Study on the combined application of CFAR and deep learning in ship detection[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(9): 1413-1421. |
128 | TANG J X, DENG C W, HUANG G B, et al. Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1174-1185. |
129 | 王玺坤, 姜宏旭, 林珂玉. 基于改进型YOLO算法的遥感图像舰船检测[J]. 北京航空航天大学学报, 2020, 46(6): 1184-1191. |
WANG X K, JIANG H X, LIN K Y. Remote sensing image ship detection based on modified YOLO algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1184-1191 (in Chinese). | |
130 | 张冬冬, 王春平, 付强. 基于改进YOLOv4-tiny的舰船关重部位检测算法[J]. 无线电工程, 2023, 53(3): 628-635. |
ZHANG D D, WANG C P, FU Q. Ship’s critical part detection algorithm based on improved YOLOv4-tiny[J]. Radio Engineering, 2023, 53(3): 628-635 (in Chinese). | |
131 | ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]∥2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Piscataway: IEEE Press, 2021: 2778-2788. |
132 | 成倩, 李佳, 杜娟. 基于YOLOv5的光学遥感图像舰船目标检测算法[J/OL]. 系统工程与电子技术, 2022: 1-9. (2022-07-13). . |
CHENG Q, LI J, DU J. Ship detection method of optical remote sensing image based on YOLOv5[J/OL]. Systems Engineering and Electronics, 2022: 1-9. (2022-07-13). (in Chinese). | |
133 | 李佳东, 张丹普, 范亚琼, 等. 基于改进YOLOv5的轻量级船舶目标检测算法[J]. 计算机应用, 2023, 43(3): 923-929. |
LI J D, ZHANG D P, FAN Y Q, et al. Lightweight ship target detection algorithm based on improved YOLOv5[J]. Journal of Computer Applications, 2023, 43(3): 923-929 (in Chinese). | |
134 | GE Z, LIU S T, WANG F, et al. YOLOX: Exceeding YOLO series in 2021[DB/OL]. arXiv preprint: 2107.08430, 2021. |
135 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 7464-7475. |
136 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]∥European Conference on Computer Vision. Cham: Springer, 2016: 21-37. |
137 | 马健, 史文旭, 鲍胜利. 基于特征融合SSD的遥感图像舰船目标检测[J]. 计算机应用, 2019, 39(S2): 253-256. |
MA J, SHI W X, BAO S L. Ship target detection in remote sensing images based on feature fusion SSD[J]. Journal of Computer Applications, 2019, 39(S2): 253-256 (in Chinese). | |
138 | 李晖晖, 周康鹏, 韩太初. 基于CReLU和FPN改进的SSD舰船目标检测[J]. 仪器仪表学报, 2020, 41(4): 183-190. |
LI H H, ZHOU K P, HAN T C. Ship object detection based on SSD improved with CReLU and FPN[J]. Chinese Journal of Scientific Instrument, 2020, 41(4): 183-190 (in Chinese). | |
139 | FU C Y, LIU W, RANGA A, et al. DSSD: Deconvolutional single shot detector[DB/OL]. arXiv preprint:1701.06659, 2017. |
140 | LI Z X, ZHOU F Q. FSSD: Feature fusion single shot multibox detector[DB/OL]. arXiv preprint:1712.00960, 2017. |
141 | 张涛, 杨小冈, 卢孝强, 等. Dense RFB和LSTM 遥感图像舰船目标检测[J].遥感学报, 2022, 26(9): 1859-1871. |
ZHANG T, YANG X G, LU X Q, et al. Dense RFB and LSTM remote sensing image ship target detection [J]. Journal of Remote Sensing, 2022, 26(9): 1859-1871 (in Chinese). | |
142 | AI J Q, TIAN R T, LUO Q W, et al. Multi-scale rotation-invariant Haar-like feature integrated CNN-based ship detection algorithm of multiple-target environment in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10070-10087. |
143 | CHEN J J, XIE F Y, LU Y Y, et al. Finding arbitrary-oriented ships from remote sensing images using corner detection[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10): 1712-1716. |
144 | WU F, ZHOU Z Q, WANG B, et al. Inshore ship detection based on convolutional neural network in optical satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4005-4015. |
145 | LIU W C, MA L, CHEN H. Arbitrary-oriented ship detection framework in optical remote-sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(6): 937-941. |
146 | QIN C, WANG X Q, LI G, et al. An improved attention-guided network for arbitrary-oriented ship detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6514805. |
147 | 肖术明, 张叶, 常旭岭, 等. 面向航天光学遥感场景压缩感知测量值的舰船检测[J]. 光学 精密工程, 2023, 31(4): 517-532. |
XIAO S M, ZHANG Y, CHANG X L, et al. Ship detection oriented to compressive sensing measurements of space optical remote sensing scenes[J]. Optics and Precision Engineering, 2023, 31(4): 517-532 (in Chinese). | |
148 | 陈丽琼, 石文轩, 范赐恩, 等. 基于多分类学习的光学遥感图像舰船检测[J]. 华中科技大学学报(自然科学版), 2019, 47(5): 62-67. |
CHEN L Q, SHI W X, FAN C E, et al. Ship detection in optical remote sensing images based on multi-class learning[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(5): 62-67 (in Chinese). | |
149 | 张新, 郭福亮, 梁英杰, 等. 基于R-CNN 算法的海上船只的检测与识别[J]. 计算机应用研究, 2020, 37(S1): 314-319. |
ZHANG X, GUO F L, LIANG Y J, et al. Detection and recognition of maritime vessels based on R-CNN algorithm [J]. Computer Application Research, 2020, 37(S1): 314-319 (in Chinese). | |
150 | 袁明新, 张丽民, 朱友帅, 等. 基于深度学习方法的海上舰船目标检测[J]. 舰船科学技术, 2019, 41(1): 111-115, 124. |
YUAN M X, ZHANG L M, ZHU Y S, et al. Ship target detection based on deep learning method[J]. Ship Science and Technology, 2019, 41(1): 111-115, 124 (in Chinese). | |
151 | ZOU Z X, SHI Z W. Random access memories: A new paradigm for target detection in high resolution aerial remote sensing images[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2018, 27(3): 1100-1111. |
152 | 王健林, 吕晓琪, 张明, 等. 基于改进R-FCN的遥感图像舰船检测[J]. 激光与光电子学进展, 2019, 56(16): 162803. |
WANG J L, LÜ X Q, ZHANG M, et al. Remote sensing image ship detection based on improved R-FCN[J]. Laser & Optoelectronics Progress, 2019, 56(16): 162803 (in Chinese). | |
153 | 凌梓钦, 徐昶悦, 仇威, 等. 基于YOLO算法的内河船舶检测与监控实现[EB/OL].(2019-01-21)[2023-04-18]. . |
LING Z Q, XU C Y, QIU W, et al. Implementation of inland river ship detection and monitoring based on YOLO Algorithm [EB/OL]. (2019-01-21)[2023-04-18]. (in Chinese). | |
154 | 段敬雅, 李彬, 董超, 等. 基于YOLOv2的船舶目标检测分类算法[J]. 计算机工程与设计, 2020, 41(6): 1701-1707. |
DUAN J Y, LI B, DONG C, et al. Detection and classification of ship target based on YOLOv2[J]. Computer Engineering and Design, 2020, 41(6): 1701-1707 (in Chinese). | |
155 | SHAO Z F, WU W J, WANG Z Y, et al. SeaShips: A large-scale precisely annotated dataset for ship detection[J]. IEEE Transactions on Multimedia, 2018, 20(10): 2593-2604. |
156 | 孔刘玲, 刘秀文. 基于改进YOLOv4算法的船舶目标检测方法[J]. 船舶工程, 2022, 44(1): 96-103, 147. |
KONG L L, LIU X W. Ship target detection algorithm based on improved YOLOv4[J]. Ship Engineering, 2022, 44(1): 96-103, 147 (in Chinese). | |
157 | 刘忻伟, 朴永杰, 郑亮亮, 等. 面向航天光学遥感复杂场景图像的舰船检测[J]. 光学 精密工程, 2023, 31(6): 892-904. |
LIU X W, PIAO Y J, ZHENG L L, et al. Ship detection for complex scene images of space optical remote sensing[J]. Optics and Precision Engineering, 2023, 31(6): 892-904 (in Chinese). | |
158 | LIU Z K, YUAN L, WENG L B, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]∥Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods. SCITEPRESS-Science and Technology Publications, 2017: 324-331. |
159 | 肖振久, 林渤翰, 曲海成. 改进YOLOv7的SAR舰船检测算法[J]. 计算机工程与应用, 2023, 59(15): 243-252. |
XIAO Z J, LIN B H, QU H C. Improved SAR ship detection algorithm for YOLOv7[J]. Computer Engineering and Applications, 2023, 59(15): 243-252 (in Chinese). | |
160 | WEI S J, ZENG X F, QU Q Z, et al. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234-120254. |
161 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[DB/OL]. arXiv preprint: 1706.03762v2, 2017. |
162 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[DB/OL]. arXiv preprint:2010.11929, 2020. |
163 | 刘文婷, 卢新明. 基于计算机视觉的Transformer研究进展[J]. 计算机工程与应用, 2022, 58(6): 1-16. |
LIU W T, LU X M. Research progress of Transformer based on computer vision[J]. Computer Engineering and Applications, 2022, 58(6): 1-16 (in Chinese). | |
164 | 付苗苗, 邓淼磊, 张德贤. 基于深度学习和Transformer的目标检测算法[J]. 计算机工程与应用, 2023, 59(1): 37-48. |
FU M M, DENG M L, ZHANG D X. Object detection algorithms based on deep learning and Transformer[J]. Computer Engineering and Applications, 2023, 59(1): 37-48 (in Chinese). | |
165 | 李建, 杜建强, 朱彦陈, 等. 基于Transformer的目标检测算法综述[J]. 计算机工程与应用, 2023, 59(10): 48-64. |
LI J, DU J Q, ZHU Y C, et al. Survey of Transformer-based object detection algorithms[J]. Computer Engineering and Applications, 2023, 59(10): 48-64 (in Chinese). | |
166 | ZHU X Z, SU W J, LU L W, et al. Deformable DETR: Deformable transformers for end-to-end object detection[DB/OL]. arXiv preprint: 2010.04159, 2020. |
167 | LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 9992-10002. |
168 | ZHU X Z, SU W J, LU L W, et al. Deformable DETR: Deformable transformers for end-to-end object detection[DB/OL]. arXiv preprint: 2010.04159, 2020. |
169 | SUN Z Q, CAO S C, YANG Y M, et al. Rethinking transformer-based set prediction for object detection[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 3591-3600. |
170 | ZHENG M H, GAO P, ZHANG R R, et al. End-to-end object detection with adaptive clustering transformer[DB/OL]. arXiv preprint:2011.09315, 2020. |
171 | DAI Z G, CAI B L, LIN Y G, et al. UP-DETR: Unsupervised pre-training for object detection with transformers[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2021: 1601-1610. |
172 | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8759-8768. |
173 | ZHANG D, ZHANG H W, TANG J H, et al. Feature pyramid transformer[C]∥European Conference on Computer Vision. Cham: Springer, 2020: 323-339. |
174 | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 9992-10002. |
175 | LIU Z, HU H, LIN Y T, et al. Swin transformer V2: Scaling up capacity and resolution[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 11999-12009. |
176 | 谢光达, 李洋, 曲洪权, 等. 基于改进Transformer的小目标车辆精确检测算法[J]. 激光与光电子学进展, 2022, 59(18): 364-371. |
XIE G D, LI Y, QU H Q, et al. Small target accurate vehicle detection algorithm based on improved Transformer[J]. Laser & Optoelectronics Progress, 2022, 59(18): 364-371 (in Chinese). | |
177 | 楼哲航, 罗素云. 基于YOLOX和Swin Transformer的车载红外目标检测[J]. 红外技术, 2022, 44(11): 1167-1175. |
LOU Z H, LUO S Y. Vehicle infrared target detection based on YOLOX and Swin Transformer[J]. Infrared Technology, 2022, 44(11): 1167-1175 (in Chinese). | |
178 | 张素霞. 光学遥感影像舰船型号识别研究[D]. 上海, 上海交通大学, 2016: 17-19. |
ZHANG S X. Research on ship type recognition in optical remote sensing images [D] Shanghai: Shanghai Jiaotong University, 2016: 17-19 (in Chinese). | |
179 | 邢坤. 基于可见光遥感图像的典型目标识别关键技术研究及其系统实现[D]. 哈尔滨: 哈尔滨工业大学, 2010: 52-69. |
XING K. Research on key technologies of typical target recognition based on visible remote sensing images and its system realization[D]. Harbin: Harbin Institute of Technology, 2010: 52-69 (in Chinese). | |
180 | HUANG Q R, WU G M, CHEN J M, et al. Automated remote sensing image classification method based on FCM and SVM[C]∥2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering. Piscataway: IEEE Press, 2012: 1-4. |
181 | 吴樊, 王超, 张红, 等. 基于知识的中高分辨率光学卫星遥感影像桥梁目标识别研究[J]. 电子与信息学报, 2006, 28(4): 587-591. |
WU F, WANG C, ZHANG H, et al. Knowledge-based bridge recognition in high resolution optical imagery[J]. Journal of Electronics & Information Technology, 2006, 28(4): 587-591 (in Chinese). | |
182 | 许军毅. 光学卫星遥感图像舰船目标检测技术研究[D]. 长沙: 国防科学技术大学, 2011: 26-35. |
XU J Y. The study of ship target detection in optical satellite remote sensing image[D]. Changsha: National University of Defense Technology, 2011: 26-35 (in Chinese). | |
183 | LAN J H, WAN L L. Automatic ship target classification based on aerial images[C]∥SPIE Proceedings, 2008 International Conference on Optical Instruments and Technology: Optical Systems and Optoelectronic Instruments, 2008. |
184 | ANTELO J, AMBROSIO G, GONZALEZ J, et al. Ship detection and recognitionin high-resolution satellite images[C]∥2009 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2009: IV-514-IV-517. |
185 | 杜春, 孙即祥, 李智勇, 等. 光学遥感舰船目标识别方法[J]. 中国图象图形学报, 2012, 17(4): 589-595. |
DU C, SUN J X, LI Z Y, et al. Method for ship recognition using optical remote sensing data[J]. Journal of Image and Graphics, 2012, 17(4): 589-595 (in Chinese). | |
186 | 王增进, 危辉. 改进的多层判别回归树算法及其在遥感图像分析中的应用[J]. 计算机学报, 2004, 27(1): 92-98. |
WANG Z J, WEI H. Improved hierarchical discriminant regression tree algorithm and its applications in analyzing remote sensing image[J]. Chinese Journal of Computers, 2004, 27(1): 92-98 (in Chinese). | |
187 | HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. |
188 | RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. |
189 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
190 | DENG L, LI J Y, HUANG J T, et al. Recent advances in deep learning for speech research at Microsoft[C]∥2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE Press, 2013: 8604-8608. |
191 | HORI T, HORI C, MINAMI Y, et al. Efficient WFST-based one-pass decoding with on-the-fly hypothesis rescoring in extremely large vocabulary continuous speech recognition[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(4): 1352-1365. |
192 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: ACM, 2014: 580-587. |
193 | HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. |
194 | MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]∥Distributed Representations of Words and Phrases and Their Compositionality, 2013: 3111-3119. |
195 | COLLOBERT R, WESTON J. A unified architecture for natural language processing: Deep neural networks with multitask learning[C]∥Proceedings of the 25th international conference on Machine learning. New York: ACM, 2008: 160-167. |
196 | WANG J, SONG J W, CHEN M Q, et al. Road network extraction: A neural-dynamic framework based on deep learning and a finite state machine[J]. International Journal of Remote Sensing, 2015, 36(12): 3144-3169. |
197 | MEI X G, MA Y, FAN F, et al. Infrared ultraspectral signature classification based on a restricted Boltzmann machine with sparse and prior constraints[J]. International Journal of Remote Sensing, 2015, 36(18): 4724-4747. |
198 | GENG J, FAN J C, WANG H Y, et al. High-resolution SAR image classification via deep convolutional autoencoders[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2351-2355. |
199 | ZOU Q, NI L H, ZHANG T, et al. Deep learning based feature selection for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2321-2325. |
200 | ZHANG F, DU B, ZHANG L P. Scene classification via a gradient boosting random convolutional network framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1793-1802. |
201 | ZHOU W X, SHAO Z F, DIAO C Y, et al. High-resolution remote-sensing imagery retrieval using sparse features by auto-encoder[J]. Remote Sensing Letters, 2015, 6(10): 775-783. |
202 | DIAO W H, SUN X, DOU F Z, et al. Object recognition in remote sensing images using sparse deep belief networks[J]. Remote Sensing Letters, 2015, 6(10): 745-754. |
203 | 宋怡萱. 光学遥感舰船图像的检测及其细粒度分类[D]. 成都: 中国科学院光电技术研究所, 2022: 2-11. |
SONG Y X. Detection and fine-grained classification of optical remote sensing ship images[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2022: 2-11 (in Chinese). | |
204 | BENTES C, VELOTTO D, LEHNER S. Target classification in oceanographic SAR images with deep neural networks: Architecture and initial results[C]∥2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway: IEEE Press, 2015: 3703-3706. |
205 | BENTES C, FROST A, VELOTTO D, et al. Ship-iceberg discrimination with convolutional neural networks in high resolution SAR images[C]∥Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, 2016: 1-4. |
206 | VIRGINIA F, DOMENICO V, BJOERN T, et al. Ship classification in high and very high resolution satellite SAR imagery[C]∥Security Research Conference, 11th Future Security, 2016: 347-354. |
207 | LIU G, ZHANG Y S, ZHENG X W, et al. A new method on inshore ship detection in high-resolution satellite images using shape and context information[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3): 617-621. |
208 | YANG X, SUN H, FU K, et al. Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks[J]. Remote Sensing, 2018, 10(1): 132. |
209 | ABADI M, BARHAM P, CHEN J M, et al. TensorFlow: A system for large-scale machine learning[C]∥Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation. New York: ACM, 2016: 265-283. |
210 | POLAT M, ALAMERI H, ORAL E A, et al. Ship detection in satellite images[C]∥ISASE 2018, 2018: 1115-1123. |
211 | LIU W C, MA L, CHEN H. Arbitrary-oriented ship detection framework in optical remote-sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(6): 937-941. |
212 | YANG X, SUN H, FU K, et al. Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks[J]. Remote Sensing, 2018, 10(1): 132. |
213 | NIE M X, ZHANG J J, ZHANG X T. Ship segmentation and orientation estimation using keypoints detection and voting mechanism in remote sensing images[C]∥International Symposium on Neural Networks. Cham: Springer, 2019: 402-413. |
214 | FENG Y, DIAO W, SUN X, et al. Towards automated ship detection and category recognition from high-resolution aerial images[J]. Remote Sensing, 2019, 11(16): 1901. |
215 | SUN J C, ZOU H X, DENG Z P, et al. Multiclass oriented ship localization and recognition in high resolution remote sensing images[C]∥IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2019: 1288-1291. |
216 | CAI Z W, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 6154-6162. |
217 | 王昌安, 田金文. 生成对抗网络辅助学习的舰船目标精细识别[J]. 智能系统学报, 2020, 15(2): 296-301. |
WANG C A, TIAN J W. Fine-grained inshore ship recognition assisted by deep-learning generative adversarial networks[J]. CAAI Transactions on Intelligent Systems, 2020, 15(2): 296-301 (in Chinese). | |
218 | 李孟洋, 孙炜玮, 张筱晗, 等. 基于全局: 局部特征联合的光学卫星遥感图像舰船目标细粒度识别[J]. 航天返回与遥感, 2021, 42(3): 138-147. |
LI M Y, SUN W W, ZHANG X H, et al. Fine-grained recognition of ship targets in optical satellite remote sensing images based on global-local features[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(3): 138-147 (in Chinese). | |
219 | 周泉成. 海面光学遥感图像舰船检测技术研究[D]. 成都: 中国科学院光电技术研究所, 2021: 33-43. |
ZHOU Q C. Research on ship detection technology in ocean optical remote sensing images [D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2021:33-43 (in Chinese). | |
220 | CHENG G, HAN J W, LU X Q. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865-1883. |
221 | XIA G S, BAI X, DING J, et al. DOTA: A large-scale dataset for object detection in aerial images[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3974-3983. |
222 | LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. |
223 | ZHANG Y L, YUAN Y, FENG Y C, et al. Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5535-5548. |
224 | LAM D, KUZMA R, MCGEE K, et al. xView: Objects in context in overhead imagery[DB/OL]. arXiv preprint: 1802.07856, 2019. |
225 | WAQAS ZAMIR S, ARORA A, GUPTA A, et al. iSAID: A large-scale dataset for instance segmentation in aerial images[DB/OL]. arXiv preprint:1905.12886, 2019. |
226 | 杨曦, 张鑫, 郭浩远, 等. 基于不变特征的多源遥感图像舰船目标检测算法[J]. 电子学报, 2022, 50(4): 887-899. |
YANG X, ZHANG X, GUO H Y, et al. Invariant features based ship detection model for multi-source remote sensing images[J]. Acta Electronica Sinica, 2022, 50(4): 887-899 (in Chinese). | |
227 | KRISHNA H, JAWAHAR C V. Improving small object detection[C]∥2017 4th IAPR Asian Conference on Pattern Recognition (ACPR). Piscataway: IEEE Press, 2017: 340-345. |
228 | ZHANG W, WANG S H, THACHAN S, et al. Deconv R-CNN for small object detection on remote sensing images[C]∥IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2018: 2483-2486. |
229 | ZAND M, ETEMAD A, GREENSPAN M. Oriented bounding boxes for small and freely rotated objects[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 4701715. |
230 | ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000. |
231 | ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586. |
232 | 徐志京, 柏雪. 基于双重特征增强的遥感舰船小目标检测[J]. 光学学报, 2022, 42(18): 1828002. |
XU Z J, BAI X. Small ship target detection method for remote sensing images based on dual feature enhancement[J]. Acta Optica Sinica, 2022, 42(18): 1828002 (in Chinese). |
[1] | 王子玲, 熊振宇, 杨璐铖, 杨蕊宁, 黄林周. AIS和光学遥感图像引导的星载SAR舰船目标识别网络[J]. 航空学报, 2024, 45(2): 328672-328672. |
[2] | 陈立群, 邹旭, 张磊, 朱颖盼, 王港, 陈金勇. 基于国产商用器件的星载智能目标检测技术[J]. 航空学报, 2023, 44(S2): 728860-728860. |
[3] | 熊振宇, 崔亚奇, 董凯, 李孟洋, 熊伟. 基于属性引导的多源遥感舰船目标可解释融合关联网络[J]. 航空学报, 2023, 44(22): 627476-627476. |
[4] | 王子玲, 熊振宇, 顾祥岐. 可见光与SAR多源遥感图像关联学习算法[J]. 航空学报, 2022, 43(S1): 727239-727239. |
[5] | 杨俊俐, 姜志国, 周全, 张浩鹏, 史骏. 基于条件随机场的遥感图像语义标注[J]. 航空学报, 2015, 36(9): 3069-3081. |
[6] | 孟钢, 贺杰, 鲍莉, 王建涛, 颜孙震, 许金萍. 基于遥感图像分块直线特征检测的机场跑道检测方法[J]. 航空学报, 2014, 35(7): 1957-1965. |
[7] | 曹琼;郑红;李行善. 一种基于纹理特征的卫星遥感图像云探测方法[J]. 航空学报, 2007, 28(3): 661-666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学